• Title/Summary/Keyword: case-based learning

Search Result 1,654, Processing Time 0.029 seconds

A Study on the Art Education Program Based on Cultural Diversity: Focused on the Case of National Museum of Modern and Contemporary Art, Korea (서울어젠다 기반 문화다양성 미술관교육 프로그램 분석 및 방향 - 국립현대미술관 사례를 중심으로 -)

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

Analysis of Teachers' Perceptions on the Subject Competencies of Integrated Science (통합과학 교과 역량에 대한 교사들의 인식 분석)

  • Ahn, Yumin;Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.97-111
    • /
    • 2020
  • In the 2015 revised curriculum, 'Integrated Science' was established to increase convergent thinking and designated as a common subject for all students to learn, regardless of career. In addition, the 2015 revised curriculum introduced 'competence' as a distinctive feature from the previous curriculum. In the 2015 revised curriculum, competencies are divided into core competencies of cross-curricular character and subject competencies based on academic knowledge and skills of the subject. The science curriculum contains five subject competencies: scientific thinking, scientific inquiry, scientific problem solving, scientific communication, scientific participation and life-long learning. However, the description of competencies in curriculum documents is insufficient, and experts' perceptions of competencies are not uniform. Therefore, this study examines the perceptions of science subjects in science high school teachers by deciding that comprehension of competencies should be preceded in order for competency-based education to be properly applied to school sites. First, we analyzed the relationship between achievement standards and subject competencies of integrated science through the operation of an expert working group with a high understanding of the integrated science achievement standards. Next, 31 high school science teachers examined the perception of the five subject competencies through a descriptive questionnaire. The semantic network analysis has been utilized to analyze the teachers' responses. The results of the analysis showed that the three curriculum competencies of scientific inquiry, scientific communication, scientific participation and life-long learning ability are similar to the definitions of teachers and curriculum documents, but in the case of scientific thinking and scientific problem solving, there are some gaps in perception and definition in curriculum documents. In addition, the results of the comprehensive analysis of teachers' perceptions on the five competencies show that the five curriculum competencies are more relevant than mutually exclusive or independent.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents (특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류)

  • Lim, Sora;Kwon, YongJin
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.77-88
    • /
    • 2017
  • Recently, with the advent of knowledge based society where information and knowledge make values, patents which are the representative form of intellectual property have become important, and the number of the patents follows growing trends. Thus, it needs to classify the patents depending on the technological topic of the invention appropriately in order to use a vast amount of the patent information effectively. IPC (International Patent Classification) is widely used for this situation. Researches about IPC automatic classification have been studied using data mining and machine learning algorithms to improve current IPC classification task which categorizes patent documents by hand. However, most of the previous researches have focused on applying various existing machine learning methods to the patent documents rather than considering on the characteristics of the data or the structure of patent documents. In this paper, therefore, we propose to use two structural fields, technical field and background, considered as having impacts on the patent classification, where the two field are selected by applying of the characteristics of patent documents and the role of the structural fields. We also construct multi-label classification model to reflect what a patent document could have multiple IPCs. Furthermore, we propose a method to classify patent documents at the IPC subclass level comprised of 630 categories so that we investigate the possibility of applying the IPC multi-label classification model into the real field. The effect of structural fields of patent documents are examined using 564,793 registered patents in Korea, and 87.2% precision is obtained in the case of using title, abstract, claims, technical field and background. From this sequence, we verify that the technical field and background have an important role in improving the precision of IPC multi-label classification in IPC subclass level.

International Comparison Study on the Science & Practical Arts (Technology·Home Economics) Curricula about Continuity of the 'System' and 'Energy' as a Big Concepts (과학과 실과(기술·가정) 교육과정에 제시된 '시스템'과 '에너지' 핵심 개념의 연계성에 대한 국제 비교 연구)

  • Park, Kyungsuk;Jeong, Hyeondo
    • Journal of Science Education
    • /
    • v.42 no.1
    • /
    • pp.27-48
    • /
    • 2018
  • The purposes of this study are to derive suggestions and implications to improve the continuity of Korean Science & Practical Arts (Technology Home Economics) curricula through international comparative analysis with focus on the science curricula or standards in five countries (Canada, New Zealand, Singapore, the United States, Korea). Original documents of the national curriculums or standards of each country collected from NCIC comparatively analyzed the big concepts of the 'system' and 'energy' based on features of related components of curriculum contents, vertical, and lateral connectivity. The results indicated that the big concepts of systems and energy were used internationally to consider the curriculum continuity. In most countries, the big concept of system was used as a framework to integrate science with technology or other contents. In particular, it was also utilized to strengthen vertical and lateral connectivity in earth science and space science contents area. In the comparison of countries for the system as the big concept, New Zealand focused interrelationship between system and human activities, systems' interaction, levels and features of system concept for the linkage between grades and subjects on the basis of level. In the case of Canada and Singapore, science and technology are combined to strengthen contents' connection. However, the revised 2015 curriculum has a lack of continuity and sequence because the concepts of system and energy were concentrated on a specific grade and contents' area. The curriculum was not developed systematically for multiple grades according to their levels. In conclusion, Korean science curriculum requires sufficient understanding of students' learning and research on learning progressions and curriculum continuity. In addition, it is very important to constitute the curriculum based on the vertical and lateral connectivity in order to improve science education and to foster students' key competencies and abilities.

Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff (강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안)

  • Kim, Dongkyun;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.795-805
    • /
    • 2021
  • In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

Development and Evaluation of a Stage Matched Exercise Intervention Program for Elders - Application of the Tran Theoretical Model - (노인 운동행위 변화단계별 중재프로그램의 개발 및 평가 - 범이론적 모형의 적용 -)

  • Kwon, Yeun-Jung
    • Research in Community and Public Health Nursing
    • /
    • v.13 no.2
    • /
    • pp.205-215
    • /
    • 2002
  • Objectives: This study was designed to develop and evaluate a stage matched exercise intervention program to effectively increase exercise behaviors in urban elders. Methods: The study included three phases: preliminary descriptive data collection, program development, and program evaluation. The data for the preliminary descriptive phase were collected between May and June 2001. The study participants were 89 urban elders who responded a questionnaire that included general characteristics, exercise related experiences, stage, and process of change in exercise behaviors. Data were analyzed using descriptive statistics, $x^2$-test, and content analysis. Development of the program was based on the preliminary data. and a literature review, and was guided by the tran theoretical model. It consisted of strategies to facilitate the process of changes used in each stage. Evaluation of the program was achieved from October to December 2001, using a case study method, in which eight urban female elders participated. Interviews were conducted on a weekly basis in the form of either an individual interview, or group discussion. Each elder subject received education in accordance with the program strategies and education materials. In the case that a subject's stage of change moved into another one, the scores for the process of change were re-measured. The data were analyzed using the content analysis technique. Results: The results were as follows: 1. Elders who participated in the preliminary data collection phase were over 75 years of age, and the majority of them were women. They had a higher educational level, and fewer number of illnesses than the subjects in other studies. Their stage of change was divided into pre-contemplation and maintenance. The social liberation scores were the highest across all stages of change. There was no difference between men and women on scores for processes of change in each stage. 2. The stage matched exercise intervention program that was developed in this study consisted of one counseling type program and three distinguished educational booklet materials. 3. The results of the case studies are as follows: 1) The study participants were 8 women between 75 and 87 years of age. At the first interviews, all of them were in the pre-contemplation stage. All of them reached the action stage before the 7th week. The scores for processes of change that were the focus in each stage increased more than the scores for other processes of change. During the early stages of change, experimental processes increased more than behavioral processes. However. this pattern was reversed during later stages of change. 2) Characteristics of the subjects in each stage were identical as presented at the tran theoretical model. The intervention strategies were effective in the transition occurred in any stage. 3) Barriers for exercise included unwillingness to exercise, fatigue, shortness of breath, and pain. Ways to overcome these barriers were 'learning an alternative exercise method that can be done at home', 'self-promising/ exercise-promising', and 'use of cues to exercise'. 4) The factors that affected the application of the program were consideration of age and personal preference in selecting an exercise pattern, individualized intervention, and use of education materials appropriate to elders. Women over 80 years of age preferred muscle strengthening and stretching exercise, because they can be easily done at home. They also preferred individualized interventions, materials that were easy to read, and education contents appropriate for elders. Conclusion: In conclusion, the stage matched exercise intervention program that considered the characteristics of the elders was effective to facilitate exercise behaviors of the elders.

  • PDF