• 제목/요약/키워드: cascade configurations

검색결과 14건 처리시간 0.023초

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

An Investigation on Separation Configurations in Compressor Cascades with Boundary Layer Suction(BLS)

  • Zhang, Hualiang;Tan, Chunqing;Zhang, Dongyang;Wang, Songtao;Wang, Zhongqi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.143-149
    • /
    • 2008
  • A numerical study was performed for a vane of a compressor with a high-turning angle and meridional divergence. At first, the effect of the suction position was discussed. Then, the optimal suction position was applied to the cascades with the aspect ratio of 2.53 and 0.3, respectively, to get the knowledge of the effect of the endwall boundary layer removal on the secondary flow along the blade height. At last, using the critical principles of the three-dimensional separation, the topological structures of the flow patterns of the body surfaces and the separation configurations were discussed in detail. The results show that the largest reduction of the total loss can be achieved when the suction slot is near the suction side. The topological structure as well as the separation configuration varies due to boundary layer removal, which restrains the flow separation at the corner and delays or depresses the separation on the suction surface. Compared with the original cascade, the cascade with the endwall boundary layer removal has a higher blade loading along the most span. Furthermore the flow loss decreases and distributes uniformly along the span.

  • PDF

Water cost analysis of different membrane distillation process configurations for brackish water desalination

  • Saleh, Jehad M;Ali, Emad M.;Orfi, Jamel A;Najib, Abdullah M
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.363-374
    • /
    • 2020
  • Membrane distillation (MD) is a process used for water desalination. However, its commercialization is still hindered by its increased specific cost of production. In this work, several process configurations comprising Direct Contact and Permeate Gap distillation membrane units (PGMD/DCMD) were investigated to maximize the production rate and consequently reduce the specific water cost. The analysis was based on a cost model and an experimentally validated MD model. It was revealed that the best achievable water cost was approximately 5.1 $/㎥ with a production rate of 8000 ㎥/y. This cost can be further decreased to approximately 2 $/㎥ only if the heating and cooling energies are free of cost. Therefore, it is necessary to decrease the MD capital investment to produce pure water at economical prices.

유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가 (Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

수치 모사를 통한 이중원호 익렬의 성능 예측 (Numerical Analysis on Cascade Performance of Double-Circular-Arc Hydrofoil)

  • 정명균;오재민;팽기석;송재욱
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.432-438
    • /
    • 2002
  • In order to design and analyze the performance of an axial-flow pump it is necessary to know the flow deviation, deflection angle and pressure loss coefficient as a function of the angle of incidence for the hydrofoil section in use. Because such functions are unique to the particular section, however, general correlation formulae are not available for the multitude of hydrofoil profiles, and such functions must be generated by either experiment or numerical simulation for the given or selected hydrofoil section. The purpose of present study is to generate design correlations for hydrofoils with double circular arc (DCA) camber by numerical analysis using a commercial code, FLUENT. The cascade configuration is determined by a combination of the inlet blade angle, blade thickness, camber angle, and cascade solidity, and a total of 90 cascade configurations are analyzed in this study. The inlet Reynolds number based on the chord and the inlet absolute velocity is fixed at 5${\times}$10$\^$5/. Design correlations are formulated, based on the data at the incidence angle of minimum total pressure loss. The correlations obtained in this way show good agreement with the experiment data collected at NASA with DCA hydrofoils.

새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구 (Study on the performance characteristics of a new CO2 auto-cascade heat pump system)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.191-196
    • /
    • 2017
  • 20세기에 대두된 HCFC나 CFC계의 냉매들의 환경에의 악영향을 극복하기 위하여 보다 환경 친화적인 이산화탄소와 같은 자연냉매에 대한 관심이 커지고 있다. 겨울철 대기의 열원을 이용하여 증발을 유도하는 이산화탄소 열펌프는 증발기의 온도가 높아 효율이 상대적으로 낮아지고, 130bar가 넘는 고압으로 인하여 열펌프 설비 부품들의 제작의 어려움이 따르게 된다. 본 연구는 보다 낮은 압력의 새로운 2단 팽창식 $CO_2$ 오토 캐스케이드 열펌프를 고안하여 이러한 단점들을 해소하고 보다 효율을 증가시키고자 하였다. 새로운 오토 캐스케이드 열펌프에 2단 팽창방식과 효과적인 냉각방식의 시스템 구성을 하여 혼합냉매인 $CO_2$ 와 R32를 적용하였다. 공정에 고압 70bar, 중간 팽창압은 25bar, 최종 저압은 10bar를 적용하여 해석한 결과, 현재의 오토 캐스케이드 열펌프 공정의 COP는 1.629이었으나, 개선된 중간 압력 25bar의 2단 팽창 오토 캐스케이드 공정은 2.332로 현재의 공정보다 43.15% 향상되었다. 또한 저압측 증발기의 온도도 $-10^{\circ}C$ 이하가 되어 찬 외기에도 증발이 용이하게 발생되는 공정이 되었다. 본 공정이 향후 $CO_2$ 열펌프의 성능계수를 보다 향상시키고 고압에 따른 부품 문제들의 해소에 기여할 수 있는 공정으로 분석되었다.

스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석 (Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Multivariable Optimal Control of a Direct AC/AC Converter under Rotating dq Frames

  • Wan, Yun;Liu, Steven;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.419-428
    • /
    • 2013
  • The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter's independent currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation results.

MIC용 비절연형 고승압 부스트 컨버터의 분석 (An analysis of non-isolated high voltage gain boost converter for MIC application)

  • 황선희;김준구;김재형;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.196-197
    • /
    • 2010
  • In same cases of grid connected system using photovoltaic modules, high boosting ratio is required for the converters. Four topologies based on conventional boost converters are implemented according to the voltage doubler and cascade methods. The topologies are analyzed and compared according to its boosting ratio and configurations. Consequently, the suitability of four topologies for MIC application is considered by simulation results.

  • PDF