• 제목/요약/키워드: cartesian robot

검색결과 121건 처리시간 0.022초

직각 좌표 로보트의 PWM 프로그래머블 제어기 설계 (Design of a PWM Programmable Controller for Cartesian Coordinates Robot)

  • 이두복;박상희
    • 대한전기학회논문지
    • /
    • 제36권4호
    • /
    • pp.293-300
    • /
    • 1987
  • This paper presents a desing of a PWM programmable controller for industrial robot to be utilized in process which reqires various movements and repeating operations. To be specific, a low-level robot language is constructed which makes easy for the user to program complex robot motion, and an interpreter is developed to execute the program. Also, related hardware and software, and monitor program for convenience of user are implemented. When the proposed controller is applied to the catresian coordinate 4-axis manipulator, it reveals that the error probabilities of X,Y and Z axis as 0.033%, 0.023%,0.028% respectively.

  • PDF

산업용 로보트의 카르테시안 직선 운동을 위한 조인트-궤적의 최소 시간화 (On Minimum Time Joint-Trajectory Planning for the Cartesian Straight Line Motion of Industrial Robot)

  • 전홍태;오세현
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.753-761
    • /
    • 1987
  • Approximation of a Cartesian straight line motion with linear interpolation in the joint space has many desirable advantages and applications. But inappropriate determination of the corresponding subtravelling and transition times makes such joint-trajectories violate the input torque/force constraints. An approach that can overcome this difficult and yield the joint trajectories utilizing the allowable maximum input torque/force is established in this paper. The effectiveness of these results is demonstrated by using a three-joint revolute manipulator.

  • PDF

Inertia Space에서 우주 로봇의 적응제어 (Adaptive Control of Space Robot in Inertia Space)

  • 이주장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.381-385
    • /
    • 1992
  • In this paper, dynamic modeling and adaptive control problems for a space robot system are discussed. The space robot consist of a robot manipulator mounted on a free-floating base where no attitude control is applied. Using an extended robot model, the entire space robot can be viewed as an under-actuated robot system. Based on nonlinear control theory, the extended space robot model can then be decomposed into two subsystems: one is input-output exactly linearizable, and the other is unlinearizable and represents an internal dynamics. With this decomposition, a normal form-augmentation approach and an augmented state-feedback control are proposed to facilitate the design of adaptive control for the space robot system against parameter uncertainty, unknown dynamics and unmodeled payload in space applications. We demonstrate that under certain conditions, the entire space robot can be represented as a full-actuated robot system to avoid the inclusion of internal dynamics. Based on the dynamic model, we propose an adaptive control scheme using Cartesian space representation and demonstrate its validity and design procedure by a simulation study.

  • PDF

광센서용 움직임 벡터 검출 알고리즘 구현 (The Implementation of Motion Vector Detection Algorithm for the Optical-Sensor)

  • 박노경;박상봉;박민형
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.251-257
    • /
    • 2010
  • 본 논문에서는 광센서에서 화면상의 픽셀에 대한 변형된 움직임 벡터 추출 알고리즘을 제안한다. 기존 블록 매칭 알고리즘보다 움직임 추출의 정확성을 높이고 연산량을 줄이도록 설계하였다. 제안된 알고리즘은 Cyclone과 삼성 0.35um CMOS 1-poly-4-metal 공정을 이용하여 칩으로 제작하였다. CARTESIAN ROBOT을 이용하여 제작된 칩의 테스트 결과 원하는 성능을 만족하였다.

장애물이 있는 경우의 효율적인 로보트 동자계획 (A simple and efficient planning of robot motions with obstacle avoidance)

  • 정봉주;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.880-885
    • /
    • 1995
  • This paper deals with the efficient planning of robot motions in the Cartesian space while avoiding the collision with obstacles. The motion planning problem is to find a path from the specified starting robot configuration that avoids collision with a known set of stationary obstacles. A simple and efficient algorithm was developed using "Backward" approach to solve this problem. The computational result was satisfactory enough to real problems. problems.

  • PDF

두 대의 산업용 로보트를 이용한 협력 작업의 최적 시간 제어 (Optimal-Time Synthesis for the Two Coordinated Robot Manipulators)

  • 조현찬;전홍태
    • 대한전자공학회논문지
    • /
    • 제26권10호
    • /
    • pp.1471-1478
    • /
    • 1989
  • The optimal-time control of the coordinated motion of two robot manipulators may be of consequence in the industrial automation. In this paper two robot manipulators garsping a common object are assumed to travel a specified Cartesian path and the method how to derive the optimal-time solution is explained. This approach is based on parameterizing the corresponding patn and utilizing the phase-plame technique in the trajectory planning. Also the torques supplied by the actuators are assumed to have some constant bounds. The effectiveness of this approach is demonstrated by a computer simulation using a PUMA 560 manipulator.

  • PDF

산업용 로보트의 효율적인 작동 데이터 산출방법에 관한 연구 (A study on the efficient calculation method of the motion data in the industrial robot)

  • 이순요;권규식;노근래
    • 대한인간공학회지
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 1990
  • The robot motion control in the industrial robot is generally executed by the teach pendant. But, it requires much teaching time and workload to the operators. This study suggests the use of the robot motion control method by the computed keyboard in the industrial robot instead of the teach pendant. TES/CCS(Teaching Expert System/Cartesian Coordinate System) and TES/WCS(Teaching Expert System/World Coordinate System) that have been proposed to improve the robot motion control are applied for this concept. This study is intended to improve the robot motion control in TES/CCS. Parameter limitation problems in getting the motion data on position and posture of the robot in macro motion control are solved by proposed geometric algorithm. This result demonstrates reduction of the average teaching task time to the teaching position.

  • PDF

새로운 신발 버핑로봇 매니퓰레이터 개발 (Development of a New Buffing Robot Manipulator for Shoes)

  • 황규득;조성덕;최형식
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.

직관적인 방법에 의한 평면형 2족 로봇의 보행 (Walking of a Planar Biped with an Intuitive Method)

  • 정구봉
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.17-24
    • /
    • 2009
  • This work deals with an intuitive method for a planar biped to walk, which is named Relative Trajectory Control (RTC) method. A key feature of the proposed RTC method is that feet of the robot are controlled to track a given trajectory, which is specially designed relative to the base body of the robot. The trajectory of feet is presumed from analysis of the walking motion of a human being. A simple method to maintain a stable posture while the robot is walking is also introduced in RTC method. In this work, the biped is modeled as a free-floating robot, of which dynamic model is obtained in the Cartesian space. Using the obtained dynamic model, the robot is controlled by a model-based feedback control scheme. The author shows a preliminary experimental result to verify that the biped robot with RTC method can walk on the even or uneven surfaces.

  • PDF

View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구 (Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots)

  • 남윤석;이범희;고명삼;고낙용
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF