• Title/Summary/Keyword: carnitine

Search Result 264, Processing Time 0.031 seconds

Effect of Dietary L-carnitine Supplementation on Serum and Liver Lipid Composition and Antioxidant Defense System in Rats fed with Different Types of Fat (지방의 종류가 다른 식이에 L-카르니틴을 첨가했을 때 흰쥐의 혈청과 간의 지질성분과 항산화계에 미치는 영향)

  • 원향례
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.1
    • /
    • pp.77-83
    • /
    • 2004
  • The aim of this study was to investigate the effects of L-carnitine on the components of serum and liver and the effects on the anti-oxidant system. For this purpose, five experimental groups were setup. For fat source, perilla oil enough with unsaturated fatty acid and beeftallow enough with saturated fatty acid were supplemented together with L-carnitine to the rats. Five experimental groups kept eight Sprague-Dawley rats respectively, They were co group supplemented with basic diet or AIN-93, PO group supplemented with perilla oil, POC group supplemented with perilla oil and L-carnitine, BT group supplemented with beeftallow, and BTC group supplemented with beeftallow and L- carnitine. The results are. 1) Weight gain, food intake and FER were not different significantly among the experimental groups. 2) Significant difference was observed in serum total lipid(P<0.05), serum triglyceride(P<0.05), serum total cholesterol (P<0.05)and serum LDL cholesterol(P<0.05). Serum total lipid and serum triglyceride were significantly low in the groups supplemented with L-carnitine. Serum total cholesterol showed difference with the supplementation of L-carnitine in BTC only. LDL cholesterol showed no significant difference with the supplementation of L-carnatine, but total values of LDL-cholesterol were high in groups supplemented with beeftallow. 3) Total cholesterol in liver was low in POC group with the supplementation of L-carnitine however, there was no difference in BTC group with the supplementation of L-carnitine. In summary, dietary L-carnitine did not influence the weight gain, food intake and food efficiency ratio among the experimental groups, but had an effect of lowering the serum total lipid and triglyceride significantly in both groups which were supplemented with L-carnitine. The effect of lowering of sew total cholesterol with the supplementation of L-carnitine in beeftallow group(BTC) only. The effect of lowering of liver total cholesterol with the supplementation of L-carnitine in perilla oil group(POC) only.

  • PDF

Effect of L-carnitine on Field Potential and ATP-dependent K+ Channel of Rat Cardiac Muscles (L-carnitine 투여가 흰쥐의 심근 Field Potential과 ATP-dependent K+ channel에 미치는 영향)

  • Kim, Jee-Youn;Sim, Young-Je;Chang, Hyun-Kyung;Kim, Chang-Ju
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Ergogenic aids are substances, devices, and practices that enhance an individual's energy use and production, and recovery from fatigue. L-carnitine increases enhance performance and aerobic capacity by stimulating lipid oxidation in muscle cells during long term exercise. L-carnitine is a well known and widely used ergogenic aid. In the present study, the effect of L-carnitine at concentrations of 100 nM, 1 μM, 10 μM, and 100 μM on the amplitude of field potential in rat cardiac muscle slices was measured using multi-channel extracellular recording (MED 64) system. In the present result, L-carnitine was shown to enhance field potential as a does-dependent manner. The increasing effect of the L-carnitine on field potential was not affected by application of the glibenclamide, an ATP-dependant K+ channel antagonist. The increasing effect of L-carnitine on field potential was suppressed by application of the diazoxide, an ATP-dependent K+ channel agonist. Present data show that L-carnitine potentiates field potentials by inhibition on ATP-dependant K+ channel in cardiac muscles. The enhancing effect of the L-carnitine on the field potential in cardiac muscles can be suggested as one of the underlying mechanism of ergogenic aid of the L-carnitine.

Dietary L-carnitine Influences Broiler Thigh Yield

  • Kidd, M.T.;Gilbert, J.;Corzo, A.;Page, C.;Virden, W.S.;Woodworth, J.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.681-685
    • /
    • 2009
  • L-carnitine promotes mitochondrial ${\beta}$-oxidation of long chain fatty acids and their subsequent transport across the inner mitochondrial membrane. Although the role of L-carnitine in fatty acid metabolism has been extensively studied, its role in live performance and carcass responses of commercial broilers is less understood. The objective of this research was to determine if Lcarnitine fed at various levels in diets differing in CP and amino acids impacted on live performance and carcass characteristics of commercial broilers. Two floor pen experiments were conducted to assess the effect of dietary L-carnitine in grower diets. In Exp. 1, Ross${\times}$Hubbard Ultra Yield broilers were placed in 48 floor pens (12 birds/pen) and fed common diets to d 14. A two (0 or 50 ppm Lcarnitine) by three (173, 187, and 202 g/kg CP) factorial arrangement of treatments was employed from 15 to 35 d of age (8 replications/treatment). An interaction (p<0.05) in carcass yield indicated that increasing CP (187 g/kg) resulted in improved yield in the presence of L-carnitine. Increasing CP from 173 to 202 g/kg increased (p<0.05) BW gain and decreased (p<0.05) feed conversion and percentage abdominal fat. Feeding dietary L-carnitine increased back-half carcass yield which was attributable to an increase (p<0.05) in thigh, but not drumstick, yield relative to carcass. In Exp. 2, $Ross{\times}Ross$ 708 broilers were fed common diets until 29 d. From 30 to 42 d of age, birds were fed one of seven diets: i) 200 g/kg CP, 0 ppm L-carnitine; ii) 200 g/kg CP, 40 ppm L-carnitine; iii) 180 g/kg CP, 0 ppm L-carnitine; iv) 180 g/kg CP, 10 ppm L-carnitine; v) 180 g/kg CP, 20 ppm L-carnitine; vi) 180 g/kg CP, 30 ppm L-carnitine; and vii) 180 g/kg CP, 40 ppm L-carnitine (6 replications of 12 birds each). BW gain, feed conversion, mortality (30 to 42 d), and carcass traits (42 d) were measured on all birds by pen. There were no treatment differences (p<0.05). However, the addition of 40 ppm L-carnitine in the 200 g CP/kg diet increased (p = 0.06) thigh yields relative to BW in comparison to birds fed diets without L-carnitine, which was further confirmed via a contrast analysis (0 vs. 40 ppm L-carnitine in the 200 and 180 g CP/kg diets; p<0.05). These results indicated that dietary L-carnitine may heighten metabolism in dark meat of commercial broilers resulting in increased relative thigh tissue accretion without compromising breast accretion.

The Anti-Proliferation and Oxidative Damage-Related Mechanism of L-Carnitine in Human Colorectal Cancer Cells (L-carnitine에 의한 인간대장암세포주 증식억제 및 산화적손상 기전 규명)

  • Lee, Jooyeon;Park, Jeong-Ran;Jang, Aera;Yang, Se-Ran
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.303-308
    • /
    • 2019
  • L-carnitine is found in high levels in muscle tissues. It has been developed as a nutrient and dietary supplement, and also used as a therapeutic supplement in various diseases including type II diabetes, osteoporosis and metabolic neuropathies. However, it is not fully understood how it affects cellular mechanisms in colorectal cancer. Therefore, we attempted to determine the effect of L-carnitine in HCT116 human colorectal cancer cells. First, the HCT116 cells were exposed to L-carnitine for 24 hours at 0-40 mM, and then analyzed for cellular proliferation, oxidative stress and related mechanisms. In a MTT assay, L-carnitine inhibited cellular proliferation and induced reactive oxygen species (ROS) in HCT116 by DCF-DA analysis. To analyze the mechanism of L-carnitine in colorectal cancer cells, we performed a western blot analysis for pERK1/2 and pp38 MAP kinase. The western blot showed that L-carnitine significantly increased protein levels of pERK1/2 and pp38 compared with control. Taken together, we found that L-carnitine has anti-proliferative function via increased ROS and activation of ERK1/2 and p38 pathway in HCT116. These findings suggest that L-carnitine may have an anti-proliferative role on colorectal cancer.

Effects of Exercise and/or High Fat Diet on Carnitine and Carnitine Palmitoyltransfersase-I mRNA Levels in Rats (운동 및 고지방식이가 흰쥐의 Carnitine 농도와 carnitine Palmitoyltransferase-I mRNA 수준에 미치는 영향)

  • 손희숙;오석흥;차연수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.670-676
    • /
    • 1999
  • The effect of exercise and/or high fat diet on carnitine status and carnitine palmitoyltransferase I(CPT I) level were investigated in Weanling Sprague Dawley rats. The rats were fed an AIN 76 diet or a modified high fat AIN diet, supplemented with 35% corn oil, for 31 days. During the 31 day period half of the animals in each dietary group were exercised on a treadmill for 90 minutes per day. Carnitine concentrations were determined in plasma and liver and CPT I mRNA levels were measured by Northern blot analysis with CPT I cDNA probe in livers of rats. Exercise rats gained less weight than non exercised rats during the study for high fat diet group. Exercise rats had a higher plasma acid soluble acylcarnitine and acid insoluble acylcarnitine concnetrations than non exercised rats for normal diet group. Exercise or high fat diet increased liver carnitine concentration, but a mixed effect was not shown. In exercised rats, CPT I mRNA levels increased significantly relative to those of nonexercised rats. CPT I mRNA levels also increased when compared high fat fed rats with those of normal diet fed rats. These data suggest that there is a correlation between carnitine concen trations and CPT I mRNA levels and that CPT I can be regulated at the transcriptional level by exercise and/or high fat diet.

  • PDF

Determination of DL-Carnitine Hydrochloride in Pharmaceutical Preparation by HPLC using UV Absorption Derivatives (자외부 흡광 유도체를 이용한 염산 DL-카르니틴의 분석)

  • Park, Jun-Kyu;Shin, Hee-Jong;Kim, Jung-Woo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.83-89
    • /
    • 1996
  • A reverse-phase HPLC method to determine DL-Carnitine Hydrochloride in pharmaceutical preparation is described. UV absorption derivatives of DL-Carnitine Hydrochloride were formed with p-Bromophenacyl Bromide in an essentially quantitative manner using crown ether as catalyst. The DL-Carnitine-bromophenacyl ester absorbed UV radiation strongly at 254nm, allowing the detection of as small a quantity as 12.5ng of DL-Carnitine Hydrochloride. A linear defection range was $5\;{\times}\;10-8 \;{\sim}\;5\;{\times}\;10-7M$ of DL-Carnitine Hydrochloride. And the linear regression at various drug concentration was =0.999 (n=10). The DL-Carnitine Hydrochloride in pharmaceutical preparation was successfully derivatized and separated from other constituents by reverse phase HPLC with detection at 254 nm.

  • PDF

L-Carnitine Administration Improves Lipid Metabolism in Styeptozotocin-Induced Diabetic Rat

  • Cha, Youn-Soo;Heo, Young-Ran;Lee, Yeoul
    • Nutritional Sciences
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 2002
  • The purpose of this study was to investigate the effects of L-carnitine administration on lipid metabolism in streptozotocin-induced diabetes. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg b.w.) and was confirmed by determination of urinary glucose secretion. Diabetic rats in the three L-carnitine treated groups were given L-carnitine, 50(D5O), 100(D100) and 200 (D200) mg/kg body weight, by subcutaneously every other day for four weeks, while animals in normal (N) and diabetic (DM) groups for control received saline by the same method. The daily weight gain was not different between normal and diabetic rats, but daily dietary intake was significantly higher in diabetic rats than in normal rat. Diabetic rats had a significantly lower carnitine concentration in both serum and liver compared to normal rats. Total carnitine concentration in serum was increased dose dependently upon carnitine administration, but statistic significance was shown only in D200 group. Diabetic rats had significantly higher serum triglyceride and cholesterol concentrations compared to normal rats. However there were no significant differences in liver L-carnitine administration to diabetic rats significantly decreased serum triglyceride but not cholesterol concentrations. In liver, triglyceride and cholesterol concentrations were not attired by L-carnitine administration. These results indicated that streptozotocin induced-diabetic rats have decreased carnitine and increased lipid concentrations compared with normal rats. Also it indicated that L-carnitine administration has an effect on the normalization of serum triglyceride concentrations in diabetic rats.

Microbial Tansformatin of $\gamma$-Butyrobetaine into L-Carnitine by Achromobacter cylcoclast (Achromobacter cycloclast에 의한 $\gamma$-Butyrobetaine의 L-Carnitine에로의 생물전환)

  • 이은구;이인영;박영훈
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.205-211
    • /
    • 1999
  • We investigated optimal conditions for the microbial transformation of $\gamma$-butyrobetaine into L-carnitine by using Achromobacter cycloclast ATCC 21921. When the cells were cultivated in the medium containing $\gamma$-butyrobetaine as the sole carbon source for both cell growth and L-carnitine production, the maximum L-carnitine production was 2.9 g/L and the conversion yield from $\gamma$-butyrobetaine to L-carnitine was as low as 30.9 mol%. In order to enhance the L-carnitine production and the conversion yield, various carbon sources were added to the $\gamma$-butyronetaine containing basal medium. In the medium supplemented with glycerol, L-carnitine production was as high as 4.6 g/L and the conversion yield was 88.2 mol%, showing a significant improvement in L-carnitine synthesis compared to those in the medium without glycerol. We also examined the additional effect of quaternary ammonium compounds such as betaine and choline, which are similar in structure to $\gamma$-butyrobetaine and L-carnitien. It was observed that in the presence of those quaternary ammonium compounds, both the L-carnitine production rate and the conversion yield increased. In addition, we found that cell growth was inhibited by a $\gamma$-butyrobetaine concentration of more than 3%, while L-carnitine production was efficient at the $\gamma$-butyrobetaine concentration of 2-3%. By cultivating the cells in the optimal medium containing glycerol and choline, we obtained an L-carnitine concentration of 7.2 g/L with the conversion yield of 98.7 mol% in 4 days.

  • PDF

Comparison of the Plasma and Urinary Carnitine Profiles between Omnivore and Vegetarian Female College Students

  • Cha, Youn-Soo;Cho, Sang-Woon;Sung, Mi-Kyung
    • Journal of Community Nutrition
    • /
    • v.4 no.2
    • /
    • pp.78-82
    • /
    • 2002
  • This study compared the effect of Korean vegetarian and omnivorous diets on plasma carnitine concentrations and urinary carnitine excretion. Twenty lactoovovegetarian and twenty omnivorous female college students consented to participate in this study. Daily nutritional intake and plasma and urinary nonesterified carnitine (NEC), acid-soluble acylcarnitine (ASAC), acid-insoluble acylcarnitine (AIAC), and total carnitine (TCNE) were determined. Daily protein, fat, retinol, vitamin B$_2$and vitamin B$\_$12/ intakes were significantly lower for vegetarians, however, fiber, carbohydrate, $\beta$-carotene, folic acid and vitamin C consumptions were much higher for vegetarians than omnivores. There were no differences in plasma NEC, ASAC, AIAC and TCNE concentrations between the two groups. Urinary carnitine excretion was lower in vegetarians, but only the differences in ASAC and TCNE excretions were statistically significant. These results suggest that the lower excretion of ASAC in vegetarians may be a reflection of their lipid metabolic state and that Korean vegetarian diets may accommodate lower carnitine intakes through efficient urinary conservation of carnitine.

L-Carnitine Reduces Obesity Caused by High-Fat Diet in C57BL/6J Mice

  • Mun, Eun-Gyeng;Soh, Ju-Ryoun;Cha, Youn-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.228-233
    • /
    • 2007
  • This study evaluated the effects of carnitine supplementation on obesity caused by a high-fat diet in C57BL/6J mice. The mice were fed a normal diet (ND), high-fat diet (HD), or carnitine-supplemented (0.5% of diet) high-fat diet (HDC) for 12 weeks. The results showed that body weight, energy intake, and feed intake were lower in the HDC group than the control groups. Acid-soluble acylcarnitine (A SAC), acid-insoluble acylcarnitine (AIAC), and total carnitine (TCNE) in the serum and liver were significantly higher in the HDC group. Hepatic carnitine palmitoyl transferase-I activity was significantly higher in the HDC group than the control groups. Acyl-coA synthetase (ACS) and carnitine palmitoyl transferase-I (CPT-I) mRNA expression in the liver was highest in the HDC group, however hepatic acetyl-coA carboxylase (ACC) mRNA expression in this group was lowest. Serum leptin levels and abdominal fat weight were lowest in the HDC group. We concluded that L-carnitine supplementation diminished the risk of obesity caused by a high-fat diet.