• Title/Summary/Keyword: cargo pump for LNG

Search Result 9, Processing Time 0.021 seconds

An Introduction of Pumps Installed for Marine Use (선박용 펌프의 소개)

  • Lee, Sang-Il;Lee, Young-Ho;Kim, You-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.363-366
    • /
    • 2006
  • Various kinds of ships(Cargo ship, Passenger ship, Training ship, Special ship etc.) are operated to transport cargo or passengers at sea in the world. Most of the important auxiliary machinery which is installed are fluid machinery in those ships. A large percentage of fluid machinery is pumps which are classified turbo and non-turbo type. While much previous research has focused on pumps for shore use, very little is known about ship's pump. In order to develop an understanding of ship's pump, we introduce common pumps used in every ship and special pumps based on ship's type. This exploratory study lays the groundwork for further investigation of ship's pumps

  • PDF

On the New Design of Liquid Dome Chair in Membrane Type LNG Carrier (멤브레인형 LNG선박의 리퀴드 돔 체어 구조개발)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.361-367
    • /
    • 2017
  • A membrane type LNG cargo tank is equipped with a pump tower and a liquid dome for loading and unloading of LNG. However, the membrane running continuously on the tank wall to prevent leakage of LNG is interrupted by the liquid dome, hence care should be taken in the design of liquid dome and its substructures. In case of GTT NO96 membrane type cargo containment system, chair structure is arranged along the periphery of the liquid dome targeting to support the membrane which is exposed to the both hull girder and thermal load. This paper proposes a new and simple chair structure, which outperforms traditional design from productivity point of view maintaining same level of structural safety. Strength assessment on the new design was performed to guarantee the structural safety of the new design, which includes strength, fatigue and crack propagation analysis.

Sloshing Load Analysis in Spherical Tank of LNG Carrier (LNG 운반선의 구형 화물창 슬로싱 해석)

  • Noh B. J.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

A Study on the Design of 34kW Cryogenic Induction Motor for LNG Spray Pump (34kW급 LNG Spray펌프용 극저온 유도전동기 설계에 관한 연구)

  • Jeong, Dong-Wook;Lee, Ki-Wook;Ryu, Jae-Ho;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.918-919
    • /
    • 2015
  • Because of environmental regulations in emissions control area, the demand for ships to use LNG as fuel is increasing. Orders for domestic shipbuilders to produce LNG carriers are steadily increasing. However, major appliances such as spray pump, main cargo pump and others have been relied on imports. Therefore, development of pump motor using at cryogenic temperature is necessary. Operating temperature of an induction motor is at $-163^{\circ}C$. At this low temperature, the resistivity of a motor coil is quite different from normal ones, and so does the torque characteristics of motor. This paper presents a designing method of a cryogenic induction motor for LNG pump. The variation of resistivity of motor coil is considered in the design process. The heat source such as core-loss, hysteresis-loss and copper-loss are analyzed to prevent the LNG evaporation which may cause the motor failure.

  • PDF

Effects of Resistivity Variation in a Very Low Temperature on the Characteristics of Induction Motors

  • Kim, Beom Jin;Kim, Jin Sung;Park, Gwan Soo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents design of induction motor in very low temperature for LNG main cargo pump and comparison of two motors. One is the motor for using in room temperature and another is the motor for using very low temperature. This paper designs with Equivalent circuit Method and uses Finite Element Method to analysis. The motor for very low temperature considers variation of coil resistivity due to temperature change and compare torque characteristic with the motor for room temperature. Design element of motor for very low temperature considers resistivity variation following temperature change on going through this paper. The result shows that two types of motors are almost same torque curve characteristic even though they are not the same environment.

Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature (극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구)

  • Lee, Jae-Beom;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Mi-Ji;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

Dynamic Characteristic Analysis at each Operating Condition for Electric Ship Propulsion System (전기추진선박시스템의 운전조건별 동특성에 관한 연구)

  • Jeon, Won;Wang, Yong-Peel;Hahn, Sung-Chin;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.13-15
    • /
    • 2008
  • 본 논문은 대형(MW 급) LNG 전기추진선박 시스템의 동적 정적 특성에 대해 다룬다. 특히, 선박 항해시와 LNG Unloading시에 대해 전력조류해석(정특성 해석)으로 시스템 모델링의 타당성을 검증하였다. 아울러, LNG Unloading에 대한 Cargo Pump 기동시 시스템의 전압변동률 및 발전기의 주파수(속도)변화를 관찰하였으며, PID제어기로 구성된 발전기 Governor의 파라미터를 설계하기 위해 실제 항해시 발생할 수 있는 몇 가지 상황(발전기 및 추진전동기 Trip)의 과도안정도해석을 수행하였다. 따라서 전동기 기동해석 및 과도안정도해석(동특성 해석)으로 발전기 및 추진전동기의 전압안정성을 관찰하였다.

  • PDF

A Study on Mechanical Ventilation Characteristics in Cargo Handling Area of Tanker (유조선 화물취급구역내 동력환기특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • In regulation of IGC code 12.1 mechanical ventilation should be arranged to ensure sufficient air movement through the space to avoid the accumulation of flammable or toxic vapours and ensure a safe working environment, but in no case should the ventilation system have a capacity of less than 30 changes of air per hour baed upon the total volume of the space. In this study, a scaled mode chamber was constructed to investigate the ventilation characteristics and stagnation area in the hood room of LNG carrier and pump room in tanker. An experimental study was performed on the model by using visualization equipment with a laser apparatus and an image intensifier CCD camera. Twelve different kinds of measuring areas were selected as the experimental condition. Instant simultaneous velocity vectors in the whole fields were measured by a 2-D PIV system A three-dimensional numerical simulation was also carried out for three different Reynolds numbers. Then the CFD predictions were discussed with the experimental results. The results show the spiral L-shape flow that moves from the opening on the left wall diagonally to the upper right part dominates the ventilation structure. The stationary area of hood room in the velcoity distributions was located in the upper left stern part.

  • PDF