• 제목/요약/키워드: carburization

Search Result 79, Processing Time 0.042 seconds

Creep Properties of Plasma Carburized and CrN Coated Ti-6Al-4V Alloy (플라즈마 침탄 및 CrN 코팅된 Ti-6Al-4V 합금의 구조 및 Creep특성)

  • Wey Myeong-Yong;Park Yong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.558-564
    • /
    • 2004
  • In order to improve the low hardness and low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment and CrN film coating were carried out. Effects of the plasma carburization and CrN coating were analyzed and compared with the non-treated alloy by mechanical and creep tests. After plasma carburization and CrN coating treatments, the carburized layer was about 150 ${\mu}m$ in depth and CrN coated layer was about 7.5 ${\mu}m$ in thickness. Hardness value of about $H_{v}$ 402 of the non-treated alloy was improved to $H_{v}$ 1600 and 1390 by plasma carburization and CrN thin film coating, respectively. Stress exponent(n) was decreased from 9.10 in CrN coating specimen to 8.95 in carburized specimen. However, the activation energy(Q) was increased from 242 to 250 kJ/mol. It can be concluded that the static creep deformation for Ti-6Al-4V alloy is controlled by the dislocation climb over the ranges of the experimental conditions.

Development of Process Technology for Low Pressure Vaccum Carburizing (저압식 진공 침탄(LPC) 열처리 공정 기술 개발)

  • Dong, Sang-Keun;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF

Characteristics of Calcined Clay by Carburization Treatment (소성 점토의 침탄 처리에 따른 물성 변화에 관한 연구)

  • Kim, Sang-Myung;Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Traditionally and generally used calcined clay was carburized, and its characteristics were studied. Carburization treatment was performed by the thermally decomposed carbon and the deposit carbon which occur in a so called 'Boudouard reaction $(2CO{\rightarrow}CO_2+C)'$ at fuel combustion process in a closed-type furnace. The color of the carburized calcine clay changed from yellow to black, and the carbon component revealed as crystalline graphite by the X-ray diffraction test. The weight of the carburized calcine clay decreased to about 4 wt.% by the 1st heating to $1400^{\circ}C$ in air but it does not decreased by the 2nd heating of the same conditions. By the carburization treatment, the water absorption changed from 13 wt.% to 6 wt.%, and the contact angle for water drop changed, too, from 0 to $87^{\circ}$ which was tested by the photograph of one minute after a water drop contact. It means the carburized calcine clay does not absorb water drop so it has a hydrophobic characteristic.

Behavior of Reduction and Carburization of EAF Dust and Mill Scale (전기로 분진과 압연 Scale의 환원 및 탄화거동)

  • Hwang Ho-Sun;Chung Uoo-Chang;Chung Won-Sub;Chung Won-Bae
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.50-56
    • /
    • 2003
  • To be recycled iron and heat source in EAF, EAF dust and mill scale generated from steelmaking plant should be made to iron carbide. Behavior of reduction and carburization in EAF dust and mill scale is studied to get fundamental data. EAF dust and mill scale are carburized at $650^{\circ}C$ by 100% CO gas. The carbon content of iron carbide(about 9 wt,% C) is higher than that of cementite without free carbon. The 1.2 times of calculated carbon content is suitable for reduction of EAF dust. The reduction temperature is appropriate to $900^{\circ}C$ in EAF dust and $1000^{\circ}C$ in mill scale. The carburization rate of mill scale are faster than those of EAF dust. The composition of super iron carbide is almost $Fe_2$C.

Improvement of Microstructural and Mechanical Properties of Ti-6Al-4V Alloy by Plasma Carburization (Ti-6Al-4V 합금의 미세조직 및 기계적 특성에 미치는 Plasma 침탄 처리의 영향)

  • Park, Yong-Gwon;Kim, Taek-Su;Ji, Tae-Gu;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.341-346
    • /
    • 2002
  • In order to improve the low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical property test. The plasma treated alloy formed a carburized layer of about 150$\mu\textrm{m}$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. It was also found that an increase of the wear resistance, fatigue life and hardness, due to the hard and fine dispersoids.

Influence of Super Carburization on the Roller Pitting Fatigue Life of 0.16C-0.60Si-2.00Cr-0.34Mo Steel (0.16C-0.60Si-2.00Cr-0.34Mo강의 피팅강도에 미치는 고탄소 침탄의 영향)

  • Shin, Jung-Ho;Lee, Woon-Jae;Kim, Young-Pyo;Ko, In-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.517-522
    • /
    • 2012
  • In this study, a super carburizing treatment was applied to improve roller pitting fatigue life. It produced excellent properties of surface hardness and temper softening resistance by forming precipitation of fine and spherodized carbides on a tempered marstensite matrix through the repeated process of carburization and diffusion after high temperature carburizing step 1. The cycle II performed two times carburizing/diffusion cycle (process) after super carburization at $1,000^{\circ}C$ had fine and spherodized carbides to subsurface $200{\mu}m$. In this case, the carbide was $(Fe,Cr)_3C$ and there was not any massive carbides. In the case of Cycle II, the roller pitting fatigue life had a 6.15 million cycles. It was improved 48% compared to normal gas carburizing treatment.