• Title/Summary/Keyword: carboxypeptidase

Search Result 75, Processing Time 0.02 seconds

N-Terminal Sequences of ${\lambda}$-type Bence Jones Proteins (${\lambda}$형(型) Bence Jones 단백질(蛋白質)의 N 말단주변(末端周邊)의 아미노산배열순서(酸配刻順序)에 관한 연구(硏究))

  • Kim, Jun-Pyong
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.65-72
    • /
    • 1970
  • Two peptides (Im pr-M, Im ch-M) derived from Im ${\lambda}-type$ of Bence Jones Protein and one peptide (Ikch-M) from Ik were separated and purified using the Dowex $50{\times}2$ column $(1{\times}20\;cm)$ and Dowex $1{\times}2(0.9{\times}50\;cm)$. The buffer solution was composed of 1% pyridine and IM formic acid in Dowex $1{\times}2$ column. The blocked N-terminal was examined with ninhydrin reaction before and after alkaline hydrolysis, which was fractionated by Dowex $1{\times}2$ column. Pyrro-glutamic acid in N-terminal residue was identified by comparing with the authentic pyrro-glutamic acid through a high voltage electrophoresis (pH 3.5, 3000 V.) after the peptide Im pr-M (PCA. Ser) was cleavaged at the position of serine with cone. (12 N) HCl and the pyrro-glutamic acid was converted to glutamic acid by treating it with N-NaOH for 116 hours at $27^{\circ}C$. The substractive method was applied to find out the sequence of peptides and carboxypeptidase A was employed to release C-terminal residue from the peptide. In present study PCA. Ser in Im Pr-M was isolated from the pronase digested ${\lambda}$-type Bence Jones protein. The yield of the Im Pr-M was 79.6 percent of its theoretical value, based on the molecular weight of Bence Jones Protein. Im ch-M (PCA. Ser Val. Leu) was isolated from the chymotrypsin digested ${\lambda}$-type Bence Jones Protein. The yield of the Im ch-M was 72.2 percent. based on the molecular weight of Bence Jones Protein. Ik ch-M (PCA. Ser. Ala. Leu) was isolated from the chymotrypsin digested ${\lambda}$-type Bence Jones Protein and its yield was 42% based on the molecular weight of Bence Jones Protein.

  • PDF

Soju brewing characteristics of yeast strains N4 and N9 isolated from Korean traditional Nuruk (재래누룩에서 분리한 N4와 N9 효모의 증류식 소주 양조특성)

  • Choi, Han-Seok;Kang, Ji-Eun;Jeong, Seok-Tae;Kim, Chan-Woo;Baek, Seong-Yeol;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.714-724
    • /
    • 2017
  • Soju is a Korean traditional distilled alcoholic beverage produced from mashes various crops and Nuruk which is cultured with wild microorganisms. This study was conducted to investigate rice-Soju brewing characteristics of yeasts isolated from Korean traditional Nuruk. The general components of rice (Hanarumbyeo) raw materials were 14.7 g of water, 6.8 g of crude protein, 0.9 g of crude lipid, 0.4 g of crude ash, and 76.5 g of carbohydrate in 100 g. Saccharifying and proteolytic activities in Hanarumbyeo ipguk (solid-state culture of Aspergillus luchuensis) were also determined. The alcohol content of the fermented wash from isolates was 15.37-16.58% (v/v), which is 16.7-36.0% higher than that of industrial yeasts (12.33-13.19%). Reducing sugar contents were 2.04-3.92 and 7.92-8.78 g/100 mL in the isolates and industrial yeasts, respectively. The isolated yeasts showed 25.2-52.7% higher yield of distillates (41% alcohol) compared to industrial yeasts. Forty-one components were detected in the rice distillated Soju (25% alcohol) and principal component analysis revealed differences between the isolated and industrial yeasts with respect to the contents of i-BuOH, isobutanal diethyl acetal, ethyl caprate, and tetradecanoic acid.

Purification and Characterization of the Bacteriocin Produced by Lactococcus sp. KD 28 Isolated from Kimchi (김치에서 분리한 Lactococcus lactis가 생산하는 박테리오신의 정제 및 특성)

  • Lee, Ji-Young;Choi, Nack-Shick;Chun, Sung-Sik;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • The bacterial strain isolated from Kimchi showed antibacterial activity against Micrococcus luteus IAM 1056. The selected strain was identified as Lactococcus lactis by 16S rRNA nucleotide sequence analysis and named as Lactococcus sp. KD 28. The treatment of culture supernatant with proteinase K removed antibacterial activity, indicating its proteinaceous nature, a bacteriocin. This bacteriocin was sensitive to hydrolytic enzymes such as ${\alpha}$-chymotrypsion, trypsin, proteinase K, lipase, ${\alpha}$-amylase and subtilisin A. The bacteriocin was highly thermostable and resistant to heating at $80^{\circ}C$ for up to an hour but 50 % of the total activity was remained at $100^{\circ}C$ for 30 min. The pH range from 2.0 to 8.0 had no effect on bacteriocin activity and it was not affected by solvents such as acetonitrile, isopropanol, methanol, chloroform and acetone up to 50% concentration. The bacteriocin showed antibacterial activity against M. luteus IAM 1056, Lactobacillus delbrueckii subsp. lactis KCTC 1058, Enterococcus faecium KCTC 3095, Bacillus cereus KCTC 1013, B. subtilis KCTC 1023, Listeria ivanovii subsp. ivanovii KCTC 3444, Staphylococcus aureus subsp. aureus KCTC 1916, B. megaterium KCTC 1098 and B. sphaericus KCTC 1184. The bacteriocin was purified through ammonium sulfate concentration, SP-Sepharose chromatography and RP-HPLC. The molecular weight was estimated to be about 3.4 kDa by tricine-SDS-PAGE analysis.

Synthesis of an Octapeptide (Alanine Angiotensin) (Octapeptide (Alanine Angiotensin) 의 合成)

  • Park, Won-Kil
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1961
  • We have shown that carboxy-peptidase destroys the biological activity of angiotensin octa-and deca-peptides. Since Proline occurs as the seventh amino acid from the amino end of the chain and since carboxypeptidase does not cleave proline from a peptid chain, it is evident that the heptapeptid H.asp-arg-val-tyr-ileu-his-pro.OH is formed by this hydrolysis. This peptide must then be biologically inactive. In order to determine whether the phenyl group of the C-terminal amino acid was the necessary requirement for biological activity of the octapeptide, $ala^8$ angiotensin octapeptide(amino acids of peptides numbered from amino end) was synthesized. For this synthesis the four dipeptides were prepared: carbobenzoxy-L-prolyl-L-alanine-P-nitrobenzyl-ester, m.p. $134-135^{\circ}C,$ carbobenzoxy-L-isoleucyl-imidazole benzyl-L-histidine methyl ester, m.p. $114-116^{\circ}C,$ carbobenzoxy-L-valyl-L-tyrosine hydrazide and carbobenzoxy B-benzyl-L-aspartyl-nitro-L-arginine. The first three dipeptides were obtained as crystalline compounds. Imidazole-benzyl-L-histidine was used in the hope that it would block the histidine imidazole against side reactions in steps subsequent to the formation of the C-terminal tetrapeptide. Also, it was through that the imidazole benzylated peptides would be easier to crystallize. This, however, was not the case. The tetrapeptide, carbobenzoxy-L-isoleucyl-L-im, benzyl-histidyl, L-prolyl-L-alanine-nitrobenzyl ester was not obtained in a crystalline form. Neither could the mono-or dihydrobromide of the tetrapeptide free base be induced to crystallize. Carbobenzoxy-L-valyl-L-tyrosine azide was condensed with the tetrapeptide free base to yield the protected hexapeptide; carbobenzoxy-L-valyl-L-tyrosyl-L-isoleucyl-L-im, benzyl, histidyl-L-Prolyl-L-alanine-nitrobenzyl ester. Upon removal of the carbobenzoxy group with hydrogen bromide in acetic acid an amorphous free base hexapeptide ester was obtained. This compound gave the correct C, H, N analysis and contained the six amino acids in the correct ratio. The octapeptide was obtained by condensing this hexapeptide with carbobenzoxy-B-benzyl-L-aspartyl-nitro, L-arginine using the mixed anhydride method of condensation. This amorphous product was proven to be homogenous by chromatography in two solvent systems and upon hydrolysis yielded the eight amino acids in correct ratio. The five protecting groups were removed from the octapeptide by hydrogenolysis over palladium black catalyst. Biological assay of the free peptide indicated that it possessed less than 0.1 per cent of both pressor and oxytocic activity of the phenylalanine8 angiotensin. This suggests that the phenyl group is a point of attachment between angiotensin and its biological receptor site.

  • PDF

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce (간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제)

  • Jung, Sung-Sub;Choi, Jung-I;Joo, Woo-Hong;Suh, Hyun-Hyo;Na, Ae-Sil;Cho, Yong-Kweon;Moon, Ja-Young;Ha, Kwon-Chul;Paik, Do-Hyeon;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.