• Title/Summary/Keyword: carbonation test

Search Result 227, Processing Time 0.042 seconds

Effect of Properties of Fly-ashes on the Characteristics of Fly-ash Mortars (플라이애시 종류에 따른 플라이애시 모르타르의 특성에 대한 연구)

  • Kim, Joo-Hyung;Park, Byoung-Sun;Jung, Sang-Hwa;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.439-445
    • /
    • 2016
  • Recently, a large number of researches about concrete containing high volume fly-ash(HVFA) have been carried to obtain carbon dioxide reduction, resource recycle and durable option in concrete industry. The quality of fly-ash such as chemical composition and fineness has high variability due to the differences of used fuels, operation condition in power plant. The aim of this study is to investigate the performances of fly-ash cement mortar containing different type of fly-ashes. The basic analysis of fly ash such as chemical composition, SEM image analysis were performed. Many mortar specimens were fabricated to evaluate the properties (compressive strength, drying shrinkage and carbonation) of mortar with various fly ash. From the test results, the quality of each fly ash must be considered and fully weighted in fly ash concrete.

Evaluation of Carbonation and Strength of High Strength Binary Concrete Used Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 2성분계 고강도 콘크리트의 강도 및 중성화 특성)

  • Kim, Hyun-Joong;Kim, Hong-Sam;Lee, Chan-Young;Cheng, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.409-412
    • /
    • 2008
  • There are many methods to improve the performance of concrete. Especially, admixture materials used in concrete as the replacement materials of cement, could fluidity, strength and durability of concrete. So recently, the terminology "High-Performance Concrete(HPC)" has been introduced into the construction industry. Most hige-performance concrete have a high cementitious content and a low water-cementitious material ratio. The proportions of the individual constituent vary depending on lacal preferences and local materials. Therefore, many trial batches are usually necessary before a successful mix is developed. The objective of this experiments is to investigate the fundamental properties of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. In this study, Use granulated blast furnace slag (30%, 45%, 60%) and water cementitious content (26%, 30%, 34%) take the gauge of capacity that strength, carbonation and XRD, X-Ray Diffraction test

  • PDF

A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement (복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가)

  • Lee, Seung-Hoon;Kim, Hyung-Doo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete for gutter of the road and marine structure. Mixtures were proportioned with the three level of water-binder ratio(W/B) and three binder compositions corresponding to Type I cement with 0%, 30% and 50% GGBS(Ground granulated blast furnace slag) replacement. Also, two different solutions of calcium chloride were used to evaluate their effect on the frost durability resistance. Specially, in case of complex of freezing and thawing with salt and carbonation, the deterioration of concrete surface is evaluated. Test results showed that the BFS30 and BFS50 mixture exhibited higher durability and lower mass loss values than those made with OPC mix and the use of GGBS can be used effectively in terms of economy and frost durability of the concrete to be in complex deterioration. Therefore, the resistance to complex deterioration with freezing-thawing was strongly influenced by the strength and the type of cement.

Mechanical Properties and Durability of Concrete in Relation to the Amount of Limestone Use (석회석 혼입량에 따른 콘크리트의 역학적 및 내구특성)

  • Oh, Sungwoo;Shin, Dongcheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.138-144
    • /
    • 2017
  • In order to reduce carbon dioxide emission in construction industry, less amount of cement use can be one of the alternatives to manufacture concrete. One of the non-sintered construction materials are limestone, which is the raw material to manufacture ordinary Portland cement(OPC). A large amount of limestone have already been used as binders such as blended cement in Europe and US. Even European countries were already established the standard of blended cement, where the limestone can be used up to 35 percent. In this study, experimental researches were conducted to investigate the effects of limestone replacement on the mechanical properties and durability of concrete with 15%, 25% and 35% of limestone substitution to use limestone in blended cement. 15 percent use of limestone in blended cement developed equivalent or even higher compressive strengths compared to Plain mixture. Porosity of limestone cement with 15 percent substitution was much lower than Plain mixture. Most durability tests such as concrete carbonation, freeze-thaw cycle and drying shrinkage strains were conducted to evaluate long-term performance, and the test results indicated that 15 percent of limestone use did not significantly influence on the concrete durability compared with plain concrete.

The Effects of Substitution Rate of Incinerated Sewage Sludge Ash on the Concrete Materials (건설재료로서 하수슬러지 소각재 적정 대체율 도출에 관한 연구)

  • Kim, Chun ho;Kim, Nam wook
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2016
  • In recent years, in terms of environmental protection and efficient use of the land, efficient utilization of byproducts and wastes generated in industrial areas are emerging. In this study, for the effective utilization of using ever increasing amount of utilizing sewage sludge incineration ash to increase sewage sludge, it is evaluated the use of as an construction material. After making concrete specimens, it is evaluated compressive strength, carbonation and environmental resistance. From the experimental results, compared with concrete without sewage sludge it is obtained satisfactory results for compressive strength and carbonation and results of the leaching test also satisfies the standard value. So, it is sufficient possibility using of concrete aggregate and the replacement rates is judged to be about 10%.

Studies on the Durable Characteristics of Self-Healing Concrete with High Water-Tightness for Artificial Ground (인공지반용 고수밀 기반 자기치유성 콘크리트의 내구특성에 관한 연구)

  • Song, Tae-Hyeob;Park, Ji-Sun;Kim, Byung-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.199-206
    • /
    • 2019
  • Experimental study on the durability characteristics to examine the feasibility of concrete with high water-tightness and self-healing performance to minimize maintenance of concrete for artificial ground is as follows. 1) When blending agent, swelling agents, and curing accelerator were added on the ternary system cement with blast-furnace slag fine particles and fly ash to give a self-healing property, higher blending strengths by 82% at design standard strength of 24MPa and by 74% at design strength of 30MPa, respectively could be obtained. 2) The permeability test for the specimens having high water-tightness and no shrinkage showed that the permeability was reduced at maximum of 98%. However, the permeability was decreased as the design strength was increased, showing the reduction rate of 87% at the design strength of 50MPa. 3) The depth of carbonation of blast-furnace slag and fly ash was increased in all the specimens compared with those of OPC only. However, as the material age was increased, carbonation penetration depth was decreased compared with the reference blend. 4) Compared with the reference blending using only OPC, the freeze-thaw resistance was higher in the case of blending with 40% of blast-furnace slag and 10% of fly ash at the design standard strength of 50MPa. In addition, the freeze-thaw resistance in general was superior in the design standard strength of 50MPa with the lower water-binder ratio (W/B) as compared with the design standard strength of 24MPa and 30MPa with the high water-binder ratios.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

An Experimental Study for Establishment of On-Site Quality Control of Repair Material by the mechanized construction (기계화시공에 의한 보수재료의 현장품질관리확립을 위한 실험적 연구)

  • Cho Bong Suk;Jang Jae Bong;Kim Yong Ro;Kang Suk Pyo;Hong Sung Yun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.160-163
    • /
    • 2004
  • In domestic, various repair materials and method systems to keep up with these reinforced concrete deteriorated due to salt damage, carbonation, chemical decay et. developed and applied. However, on-site quality control of various repair materials and method systems isn't achieved desirably because it is depend completely on a men of experience' opinions above all else regardless of various on-site environments. In this background, mock up test with due regard to real on-site environments was performed to secure fundamental data for establishment of desirable on-site quality control. Mock up test using repair mortar analyzed from angles of construction methods, mechanical spraying pressures, W/M. Construction methods were designed manpower method and spraying method, spraying pressures were designed 32, 42, 52 psi, W/M were designed 14.4, 15.4, $16.4\%$. And compressive strength, Chloride ion diffusion coefficient, bond strength, SEM. of mock up test specimens were evaluated. In conclusion, we confirmed excellency of mechanical spraying pressures, fined extremely excellency of condition of spraying pressure 42 ps, W/M $14.4\%$ within this study. therefore the results of this study will be useful to provide fundamental data for establishment of desirable on-site quality control.

  • PDF

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

An Experimental Study on the Engineering Properties of Fiber Reinforced Concrete using Kenaf Fibers (양마섬유를 혼입한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Jun, Woo-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • This study is to examine experimentally on the engineering properties of fiber reinforced concrete using kenaf(KN) fiber and another organic fibers for comparing test, and propose the usable method of KN fiber as an natural fiber in the concrete industry. It is to select 4 contents(0, 0.3, 0.6 and $0.9kg/m^3$) of KN fiber and 4 organic fibers (Jute, Cellulose, Polypropylene and Nylon). For this study, it is to perform various tests including slump, air content, plastic and drying shrinkage, flexural and tensile strength, carbonation depth for the fiber reinforced concrete according to contents of KN fiber and 4 organic fibers. The results of this study are as follows : In case of KN fiber contents $0.6kg/m^3$, it shows the effective results from increasing concrete strength including flexural and tensile, from decreasing plastic and drying shrinkage, carbonation depth. Also KN fiber is confirmed having excellent performances by comparing with test results of another organic fibers as same contents $0.6kg/m^3$. Therefore, considering concrete test results, cost and environment, KN fiber is proposed as the optimum contents in the range of $0.6kg/m^3$ and an effective fiber materials, and needs to keep up these study on the site application.