• 제목/요약/키워드: carbonation technology

검색결과 149건 처리시간 0.031초

Technologies for the Removal of Water Hardness and Scaling Prevention

  • Ahn, Min Kyung;Han, Choon
    • 에너지공학
    • /
    • 제26권2호
    • /
    • pp.73-79
    • /
    • 2017
  • In nucleation assisted crystallization process formed $CO_2$ leaves as colloid gas and is used as the template by the rapidly growing crystals in the nucleation site. This emulsion of $CaCO_3$ micro-crystals & $CO_2$ micro-bubbles forms hollow particles. Formed hollow particles are double walled, both internal and external faces belonging to the cleavage aragonites which separate the surrounding water from the enclosed gas cavity. Hence, the reverse reaction of $CO_2$ with water forming Carbonic Acid is not possible and the pH stability is maintained. In fact every excess $CaCO_3$ crystals are buffering any carbonic acid left over. This $CO_2$ based nucleation technology prevents scale formation in water channels, but it also helps to reduce the previously formed scales. This process takes out water dissolved $CO_2$ in almost-visible micro-bubbles forms that helps reducing previously formed scale over a period of time (depends on the usage period). The aragonite crystals can't form scale because of its stable molecular structure and neutral surface electro potentiality.

쉴드 TBM 터널의 구조물 성능 평가 기준 개발 (Development of performance assessment criterion for structures of shield TBM tunnel)

  • 성주현;이유석;홍은수;변요셉
    • 한국터널지하공간학회 논문집
    • /
    • 제17권5호
    • /
    • pp.553-561
    • /
    • 2015
  • 본 연구에서는 국내에 활발히 적용되기 시작한 쉴드 TBM 터널의 합리적인 유지관리를 위한 성능평가 기준을 제시하였다. 이를 위해 국내 외 성능평가 기준을 분석하였고, 국내 시공된 쉴드 TBM 터널에 대한 현장조사 및 정밀안전진단 보고서 분석을 통한 변상사례를 조사하여 성능평가 항목을 균열, 누수, 파손, 박리, 층분리 및 박락, 백태, 품질상태, 철근노출, 탄산화, 단차, 볼트상태, 배수상태, 지반상태, 접속부상태, 공동구 상태로 선정하였다. 또한 다중의사결정기법인 AHP 기법을 활용하여 선정된 성능평가에 대한 합리적인 가중치를 산정하였다.

EVALUATION OF A PENETRATION-REINFORCING AGENT TO PREVENT THE AGING OF CONCRETE

  • Cho, Myung-Sug;Noh, Jea-Myoung;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1127-1134
    • /
    • 2009
  • Concrete has three major properties after a penetration-reinforcing agent is applied on its surface. First, the durability is improved by the sol-gel process of synthesized material from the polycondensation of TEOS (tetra-ethoxyorthosilicate) and acrylate monomer. Second, the capability to absorb impact energy is reinforced through the formation of a soft and flexible layer of organic monomers by Tea (Tetra Ethyl Amin). Third, the capability to prevent deterioration is enhanced by adding isobutyl-orthosilicate and alcohol. The performance and application of an agent developed through the synthesis of organic and inorganic material in an effort to prevent concrete from deterioration and improve the durability of concrete structures were verified in diverse experiments. The results of these experiments showed that the application of the proposed penetration-reinforcing agent has the effect of increasing the compressive strength by filling up the internal pores of concrete with physically and chemically stable compounds after penetrating the concrete. It also improves the durability against the deterioration factors such as salt water damage, carbonation, freezing and thawing, and compound deterioration. Therefore, it is confirmed that the penetration-reinforcing agent is a useful substance for the management and repair of concrete structures.

Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer

  • Annadurai, Shalini;Rathinam, Kumutha;Kanagarajan, Vijai
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.139-147
    • /
    • 2020
  • This paper reports the effect of Rice Husk Ash (RHA) in geopolymer concrete on strength, durability and microstructural properties under ambient curing at a room temperature of 25℃ and 65±5% relative humidity. Rice husk was incinerated at 800℃ in a hot air oven. and ground in a ball mill to achieve the required fineness. RHA was partially added in 10, 15, 20, 25, 30 and 35 percentages to fly ash with 10% of GGBS to produce geopolymer concrete. Test results exhibit that the substitution of RHA in geopolymer concrete resulted in reduced strength properties during initial curing. In the initial stage, workability of GPC mixes was affected by RHA particles due to the presence of dormant particles in it. It is evident from the microstructural study that the presence of RHA particles densifies the matrix reducing porosity in concrete. This is due to the presence of RHA in geopolymer concrete, which affects the ratio of silica and alumina, resulting in polycondensation reactions products. This study suggests that incorporation of rice husk ash in geopolymer concrete is the solution for effective utilization of waste materials and prevention of environmental pollution due to the dumping of industrial waste and to produce eco-friendly concrete.

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권spc1호
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價) (Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar)

  • 고경택;류금성;이장화;강현진
    • 자원리싸이클링
    • /
    • 제20권3호
    • /
    • pp.40-47
    • /
    • 2011
  • 본 논문에서는 시멘트를 전혀 사용하지 않고 결합재로서 고로슬래그를 단독으로 사용한 배합과 고로슬래그와 플라이애쉬를 혼합한 배합의 강도, 수축 및 내구성에 대해 검토하였다. 그리고 비교를 위해 보통포틀랜드시멘트를 사용한 일반 모르타르에 대해서도 동일한 실험을 수행하였다. 그 결과, 알칼리 활성 모르타르는 일반 시멘트 모르타르에 비해 강도발현, 수축 및 동결융해 저항성 측면에서 우수한 것으로 나타났다. 특히 고로슬래그와 플라이애쉬를 혼합사용한 경우에는 압축강도 60 MPa 이상 달성이 가능하고, 일반 시멘트 모르타르에 비하여 수축량은 40% 정도 감소하고 동결융해 저항성은 20% 정도 향상되나, 탄산화 속도는 2~3배 촉진되는 것으로 나타났다.

칼륨이온 공존 수용액 내 칼슘이온 제거를 위한 제올라이트 개질 연구 (A Study on the Modified Zeolite for the Removal of Calcium Ion in a Potassium Ion Coexistence Solution)

  • 이예환;김지유;이주열;박병현;김성수
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.726-730
    • /
    • 2019
  • 본 연구는 제올라이트를 이용한 칼슘이온 제거에 대한 것으로 시멘트 산업에서 발생하는 cement kiln dust를 이용한 CaCO3 제조 공정의 문제를 해결하기 위함이다. 칼슘이온을 제거하기 위하여 제올라이트를 개질하여 사용하였으며 결합 양이온 및 구조를 고려한 최적 제올라이트 선정, 칼슘이온 제거 성능 평가, 개질 용액의 종류 및 농도의 영향, K 공존 시 제거 선택도 평가에 대해 연구를 수행하였다. 5종의 제올라이트 중 13X 제올라이트의 칼슘 이온 제거 성능이 가장 우수함을 확인하였고 NaCl 대신 KCl을 개질 용액으로 사용하였을 때 칼슘이온 제거 성능이 증진되는 것을 확인할 수 있었다. 본 연구는 탄산화 공정의 문제 해결, 고농도의 KCl 회수 기술의 바탕이 될 것으로 판단된다.

플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성 (Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag)

  • 류금성;고경택;이장화
    • 한국건설순환자원학회논문집
    • /
    • 제1권1호
    • /
    • pp.35-41
    • /
    • 2013
  • 본 논문에서는 시멘트를 전혀 사용하지 않은 지오폴리머 콘크리트를 개발할 목적으로 시멘트 대신에 결합재로 고로슬래그 미분말 또는 고로슬래그 미분말과 플라이애시를 혼합 사용한 지오폴리머 모르타르의 강도발현과 탄산화 및 동결융해 저항성에 대해 검토하였다. 그리고 비교를 위해 보통포틀랜드 시멘트를 사용한 일반 모르타르에 대해서도 동일한 실험을 수행하였다. 그 결과, 지오폴리머 모르타르는 일반 시멘트 모르타르에 비해 강도발현, 동결융해 저항성 측면에서 우수한 것으로 나타났다. 특히 고로슬래그와 플라이애시를 혼합사용한 지오폴리머 모르타르는 압축강도 60MPa 이상 달성이 가능하고, 일반 시멘트 모르타르에 비하여 동결융해 저항성은 20% 정도 향상되나, 탄산화 속도는 2.2~3.5배 촉진되는 것으로 나타났다.

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz;Ignacio J., Navarro;Victor, Yepes
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.197-206
    • /
    • 2023
  • The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

고강도 숏크리트의 품질평가와 복합열화시험을 통한 장기내구성 검토 (An Investigation on the Quality of High-Strength Shotcrete and the Long Term Durability using Combined Deterioration Test)

  • 마상준;김동민;최재석;안경철;김선명;고진곤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.906-915
    • /
    • 2006
  • In this study, Field test was performed using high-quality additions and accelerators to obtain the improvement of the strength on domestic shotcrete and quality test based on EFNARC was performed. In addition, Deterioration test that combined the Freezing-thawing and Carbonation was also performed in order to investigate a long-term durability of high-strength shotcrete. As a result of field test, a promotion ratio of early strength is $90\sim97%$ in case of using alkali-free accelerators. And a compressive strength of shotcrete using Micro-silica fume was $45.2\sim55.8MPa$ and the flexible strength was $5.01\sim6.66MPa$, so a promotion ratio of strength was $37\sim79%$, $17\sim61%$ respectively. It was showed that increment effect of strength by the Micro-silica fume replacement of $7.5\sim10%$ for cement mass was remarkable. It was also realized that application of Micro-silica fume to shotcrete reduced deterioration and improved a long-term durability of shotcrete.

  • PDF