DOI QR코드

DOI QR Code

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag

플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성

  • Received : 2013.05.13
  • Accepted : 2013.06.21
  • Published : 2013.06.30

Abstract

In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

본 논문에서는 시멘트를 전혀 사용하지 않은 지오폴리머 콘크리트를 개발할 목적으로 시멘트 대신에 결합재로 고로슬래그 미분말 또는 고로슬래그 미분말과 플라이애시를 혼합 사용한 지오폴리머 모르타르의 강도발현과 탄산화 및 동결융해 저항성에 대해 검토하였다. 그리고 비교를 위해 보통포틀랜드 시멘트를 사용한 일반 모르타르에 대해서도 동일한 실험을 수행하였다. 그 결과, 지오폴리머 모르타르는 일반 시멘트 모르타르에 비해 강도발현, 동결융해 저항성 측면에서 우수한 것으로 나타났다. 특히 고로슬래그와 플라이애시를 혼합사용한 지오폴리머 모르타르는 압축강도 60MPa 이상 달성이 가능하고, 일반 시멘트 모르타르에 비하여 동결융해 저항성은 20% 정도 향상되나, 탄산화 속도는 2.2~3.5배 촉진되는 것으로 나타났다.

Keywords

References

  1. Bakharev, T., Sanjayan, J.G., and Cheng, Y.B. (2001). "Resistance of alkali-activated slag concrete to carbonation," Cement and Concrete Research, 31, 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9
  2. Bijen, J., and Waltje, H. (1989). "Alkali activated slag-fly ash cement, Fly ash, Silica fume, Slag and Natural Pozzolans in Concrete," Proc. 3rd Int. Conf. Trondheim, SP114-76, 1566-1578.
  3. Byfors, K., Klingstedt, G., Lehtonen, V., Pyy, H., and Romben, L. (1989). "Durability of concrete made with alkali- activated slag," Proceedings 3rd CANMET/ACI Inter. Conf., ACI SP-114, 1429-1466.
  4. Collins, F.G., and Sanjayan, J.G. (2000). "Effect of pore size distribution on drying shrinkage if alkali-activated slag concrete," Cement and Concrete Research, 30(9), 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  5. Davidovits, J. (1989). "Geopolymers and geopolymeric materials," Thermal Analysis and Calorimetry, 35(2), 429-441. https://doi.org/10.1007/BF01904446
  6. Fernandez-Jimeneza, A., Palomob, J.G., and Puertas, F. (1999). "Alkali-activated slag mortars: mechanical strength behaviour," Cement and Concrete Research, 29, 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4
  7. Hardjito, D., and Rangan, B.V. (2005). "Development and Properties of Low-calcium Fly Ash-based Geopolymer Concrete," Research Report CC-1, Faculty of Engineering, Curtin Univ of Technology.
  8. Kang, H.J., Ryu, G.S., Koh, K.T., kang, S.T., Park, J.J., Kim, S.W., and Lee, J.H. (2009). "Effect of alkaline activator and curing condition on the compressive strength of cementless fly ash based alkali-activated mortar," Journal of Korea Institute of Resources Recycling, 18(2), 39-50 [in Korean].
  9. Koh, K.T., Ryu, G,S., and Lee, J.H. (2010). "Properties of the flowability and strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag," Journal of Korea Recycled Construction Resources Institute, 5(4), 114-121 [in Korean].
  10. Koh, K.T., Ryu, G,S. Lee, J.H., Kang, H.J., and Jeon, Y.S. (2011). "Flowability and compressive strength of cementless alkali-activated mortar using blast furnace slag," Journal of Korea Recycled Construction Resources Institute, 6(1), 63-71. [in Korea]
  11. Koh, K.T., Ryu, G.S., Lee, J.H., and kang, H.J. (2011). "Evaluation on the shrinkage and durability of cementless alkali-activated mortar," Journal of Korea Institute of Resources Recycling, 20(3), 40-47 [in Korean].
  12. Metha, P.K. (1986). "Concrete, Structures, Properties, and Materials," Prentice-Hall International Series in Civil Engineering and Engineering Mechanics.
  13. Nevill, A.M. (1995). "Properties of Concrete," Fourth and Final Edition, Longman.
  14. Palacios, M., and Puertas, F. (2007). "Effect of shrinkagereducing admixtures on the properties of alkali-activated slag mortars and pastes," Cement and Concrete Research, 37, 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  15. Palomo, A., Grutzeck, M.W., and Blanco, M.T. (1999). "Alkali-activated fly ashes a cement for the future," Cement and Concrete Research, 29, 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  16. Powers, T.C. (1945). "A Working hypothesis for further studies of frost resistance of concrete," Proc. of ACI, 41
  17. Puertas, F., Palacios, M., and Vazquez, T. (2006). "Carbonation process of alkali-activated mortars," J Mater SCI 41, 3071-3082. https://doi.org/10.1007/s10853-005-1821-2
  18. Puertas, F., and Fernandez-Jimeneza, A. (2003). "Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes," Cement and Concrete Composites, 25(3), 287-292. https://doi.org/10.1016/S0958-9465(02)00059-8
  19. Puertas, F., Martínez-Ramírez, S., Alonso, S., and Vazquez, T. (2000). "Alkali-activated fly ash/slag cement:strength behaviour and hydration products," Cement and Concrete Research, 30, 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2
  20. Shi, C., Krivenko, P.V., and Roy, D. (2006). "Alkali-activated cements and concretes," Taylor & Francis.
  21. Smith, M.A., and Osbrone, G.J. (1977). "Slag/fly ash cement," J. World Cement Technol, 6, 223-233.
  22. Wang, S.D., Pu, X.C., Scrivener, K.L., and Pratt, P.L. (1995). "Alkali-activated slag cement and concrete: A review of properties and problems," Advances in Cement Research, 7(27), 93-102. https://doi.org/10.1680/adcr.1995.7.27.93
  23. Yang, K.H., and Song, J.G., (2007). "The properties and application of alkali-activated concrete with no cement," Journal of the Korea Concrete Institute, 19(2), 42-48 [in Korean].
  24. Zhao, F.Q., Ni, W., Wang, H.J., and Liu, H.J. (2007). "Activated fly ash/slag blended cement," Resources Conservation and Recycling, 52, 303-313. https://doi.org/10.1016/j.resconrec.2007.04.002
  25. 鎌田英治, (1991). "セメント.コンクリート化学とその應用, 凍結融解抵抗性/凍結作用を受けたコンクリートの擧動と細孔構造," セメント協会.

Cited by

  1. Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products vol.2, pp.1, 2014, https://doi.org/10.14190/JRCR.2014.2.1.052
  2. Effects of Mineral Admixture on the Characteristics of Grout for PSC Bridge vol.2, pp.1, 2014, https://doi.org/10.14190/JRCR.2014.2.1.026