• Title/Summary/Keyword: carbonation depth of concrete

Search Result 174, Processing Time 0.023 seconds

Experimental Study on CO2 Diffusivity in Cementitious Materials

  • Jung, Sang-Hwa;Lee, Myung-Kue;Kim, Jee-Sang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion coefficient increases with the increase of water-cement ratio. The diffusion coefficient decreases with the increase of relative humidity at the same water-cement ratio. The diffusion of carbon dioxide reached the steady state within about five hours after exposure. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger then that of concrete or mortar. The quantitative values of diffusivity of carbon dioxide in this study will allow more realistic assessment of carbonation depth in concrete structures.

Probabilistic Estimation of Service Life of Box Culvert for Power Transmission Considering Carbonation and Crack Effect (탄산화와 균열을 고려한 전력구 콘크리트 구조물의 확률론적 수명 예측)

  • Woo, Sang-Kyun;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.30-40
    • /
    • 2014
  • The demand of underground structure such as box culvert for electric power transmission is increasing more and more, and the service life extension of these structures is very important. Recent observations in field and experimental evidences show that even steel in concrete can be corroded by carbonation reaction of cover concrete. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of box culverts in our nation was evaluated by measuring the carbonation rate and concrete cover depth in field. Then, the service life due to carbonation at the cover depth was calculated by in situ information and the Monte Carlo simulation in a probabilistic way. Additionally, the accelerated carbonation test for the cracked beam specimen was executed and the crack effect owing to the carbonation process on the service life of box culvert was numerically investigated via Monte Carlo simulation based on the experimental results.

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength (설계기준 강도별 순환골재 콘크리트의 탄산화 특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Park, Kwang-Min;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 2017
  • This paper presents mechanical properties and carbonation behavior of the recycled aggregate concretes(RAC) in which natural aggregate was replaced by recycled coarse aggregate and fine aggregate by specified concrete strength levels(21, 35, 50MPa). A total of 18 RAC were produced and classified into six series, each of which included three mixes designed with three specified concrete strength levels of 21MPa, 35MPa and 50MPa and three recycled aggregate replacement ratios of 0, 50 and 100%. Physical and mechanical properties of RAC were tested for slump test, compressive strength, and carbonation depth. The test results indicated that the slump of RAC could be improved or same by recycled coarse aggregate replacement ratios, when compared with natural aggregate. But slump of RAC was decreased as the recycled fine aggregate replacement ratios increase. Also, the test results showed that the compressive strength was decreased as the recycled aggregate replacement ratios increased and it had a conspicuous tendency to decrease when the content of the recycled aggregate exceeded 50%. Furthermore, the result indicated that the measured carbonation depth increases by 40% with the increase of the recycled aggregate replacement. In the case of the concrete having low level compressive strength, the increase of carbonation depth tends to be higher when using the RCA. However, the trend of carbonation resistivity in high level compressive strength concrete is similar to that obtained in natural aggregate concrete. Therefore, an advance on the admixture application and mix ratio control are required to improve the carbonation resistivity when using the recycled aggregate in large scale.

Prediction of Depth of Concrete Carbonation According to Microenvironmental Conditions (미세 환경조건에 따른 콘크리트 탄산화 깊이 예측)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.158-159
    • /
    • 2021
  • When the porous concrete is exposed to the external environment, the internal relative humidity changes from time to time due to the inflow and outflow of moisture. This change in moisture is affected by temperature. The temperature and humidity of concrete is dominant in the carbonation rate, the largest cause of deterioration of concrete. In this study, actual weather data were used as boundary conditions. A carbonization model of concrete temperature and humidity and calcium hydroxide was constructed to perform long-term analysis. There is a slight error in the carbonation formula of the Japanese Academy of Architecture applying the Kishtani coefficient, a representative experimental formula related to carbonization, and the analysis result values. However, considering that it behaves very similarly, it is thought that a fairly reliable numerical analysis model has been established. A slight error is believed to be due to the fact that the amount of residual calcium hydroxide in the carbonated site has not yet been clearly identified.

  • PDF

The Surface Sealing Performance of Film, Air cap and Polystyrene foam for Preventing Carbonation of High-Volume Slag Concrete (고로슬래그 미분말 다량치환 콘크리트의 탄산화 억제를 위한 기밀성 향상재 부착효과)

  • Han, Dongyeop;Kim, Kyunghoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The goal of this research was evaluating and suggesting the solution of preventing carbonation of concrete replaced high-volume of slag. The concrete mixtures were prepared with high-volume slag and recycled aggregate, and the concrete samples were evaluated the carbonation depth with various surface treatment methods. For various surface treatment methods and surface protecting sheets, bonding strength and carbonation depth were measured. Basically, from the results, the carbonation of concrete was completely prevented with any type of surface treatment method and surface protecting sheet as far as the surface treatment materials were remained. Therefore, in this research, it was known and suggested that the easiness of handling and sufficient bonding performance was much important than the quality of surface protecting sheets.

Microscopic Influence of Temperature on Carbonation for Marine Concrete Structure (항만콘크리트 구조물의 탄산화에 미치는 온도의 미세구조적 영향)

  • Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.272-278
    • /
    • 2010
  • Some recent researches reported that high temperature rising decreases the carbonation depth of concrete, which is contrary to the previous research results. Carbonation has been known as a reaction between calcium hydroxide and carbon dioxide. But a few researches showed that the other cement hydrates as well as calcium hydroxide react with carbon dioxide. This paper investigates the influence of temperature on carbonation and the variation of $Ca(OH)_2$ and $CaCO_3$ by carbonation. In order to estimate the carbonation depth and the quantities of reactant and product of carbonation reaction, phenolphthalein testing and thermagravimetric analyzer test were conducted. The measurement of carbonation depth with temperature showed that the temperature increase from $20^{\circ}C$ to $30^{\circ}C$C in carbonation environment makes the carbonation depth larger, but the increase from $30^{\circ}C$ to $40^{\circ}C$ has a small influence on the carbonation depth. Comparing calcium hydroxide and calcium carbonate with temperature, the quantity of $CaCO_3$ of specimen carbonated at $30^{\circ}C$ is greater than that of specimen carbonated at $40^{\circ}C$ and the quantity of $Ca(OH)_2$ of specimen carbonated at $30^{\circ}C$ is similar to that of specimen carbonated at $40^{\circ}C$. This observation shows that there is the optimum temperature increasing carbonation depth and the optimum temperature is close to $30^{\circ}C$.

A Suggestion for Carbonation Prediction Using Domestic Field Survey Data of Carbonation (국내 탄산화 실태자료를 이용한 탄산화 예측식의 제안)

  • Kwon, Seung-Jun;Park, Sang-Sun;Nam, Sang-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.81-88
    • /
    • 2007
  • Among deteriorations of concrete due to environmental exposure, carbonation problems of concrete structures have increased in urban and underground structures. But conventional carbonation-prediction equations that were proposed by foreign references, can not be applied directly to the prediction of carbonation for domestic concrete structures. The purpose of this study is to propose a prediction equation of carbonation depth by considering domestic exposure conditions of concrete structures. For the derivation of the equation, conventional carbonation-prediction equations are analyzed. Through considering the relationship between results of prediction equation and those of various domestic field survey data, the so-called correction factors for different domestic exposure condition of concrete structures are derived. Finally, a carbonation-prediction equation of concrete structures under domestic exposure conditions is proposed with consideration for concrete strength in core and correction factors.

Service Life Prediction and Carbonation of Bridge Structures according to Environmental Conditions (환경 조건에 따른 교량구조물의 탄산화 현황 및 내구수명 예측)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.126-132
    • /
    • 2010
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. Reinforced steel corrosion due to concrete carbonation is one of main factors on the decrease in durability of RC structure. This study investigates the influence of carbonation on the bridges under various environment condition and quantifies the effect of carbonation various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. According to experimental results of the carbonation depth, the carbonation depth increased with structural age. It is analyzed that carbonation velocity of the structures under urban area and sea condition is 1.6-1.9 times faster than the river condition. Service life of the bridges under urban area and sea condition is decreased about 2.4-3.3 times than river condition.

The experimental study on the compressive strength for cementitious material using CO2 curing (CO2 양생을 이용한 시멘트계 재료의 압축강도 발현에 관한 실험적 연구)

  • Sung, Myung-Jin;Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.264-265
    • /
    • 2014
  • Currently, CO2 existed in the air usually reacts concrete, and then CaCO3 can be appeared. As time goes by, pH of concrete is decreased and corrosion of steel can be happened. This phenomenon is called carbonation. For preventing carbonation of concrete, various methods like using corrosion inhibitor, high compressive strength concrete, and enough covering depth are adopted. But these method are usually passive methods focused on corrosion of steel and have limitation on economic. Thus, as basic study for active method of carbonation, cement pastes with CO2 reactive material (γ-C2S, MgO) and GBFS were in accelerated carbonation, and the compressive strengths were measured. On the result, the compressive strength was improved better than non-carbonation. Through measuring the weight change using TG-DTA, as specimens were carbonated, according to decreasing of Ca(OH)2 and Mg(OH)2, CaCO3 and MgCO3 were increased. Therefore it can be shown that carbonation curing can be realized.

  • PDF