• Title/Summary/Keyword: carbonate content

Search Result 289, Processing Time 0.027 seconds

The Corrosion Behavior of Li/K Carbonate Melts with CaCO3 Additives on Separator Plate in the Molten Carbonate Fuel Cell in the Anode Environments

  • Cho, Kyehyun;Lee, Chul-Hwan;Sung, Zu-Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.129-136
    • /
    • 2006
  • High temperature corrosion behavior of AISI-type 316L stainless steel for the MCFC(molten carbonate fuel cell) bipolar application was studied by immersion test and penetration attack method in anode environment ($650^{\circ}C$, $Li_2CO_3/K_2CO_3=62/38$ mol%, $H_2/CO_2=80/20$ vol%) without or with different $CaCO_3$ content. Not only immersion test method but also morphological observation of samples in the carbonate melts are adopted as experimental methods. With aid of the morphological observation of cross section of samples immersed in a carbonate melt was possible to obtain penetration attack. The concentration effect of $CaCO_3$ inhibitor was investigated in order to verify the optimum concentration for practical application in MCFC stack operation. The corrosion rate in the presence of $CaCO_3$ was proven to be decreased as a function of $CaCO_3$ concentration. The corrosion rate in the presence of $CaCO_3$ was measured with a value of 6.9 mpy which is 2.4 times lower than that of inhibitor-free electrolyte. The cross section microscopy revealed that the internal penetration by oxidation in molten carbonate is very severe. In this case, the attack was occurred not only dissolution loss in the electrolyte by corrosion reaction but also weight gain through oxide layer by internal penetration.

Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste (폐 굴껍질 이용 침강성 탄산칼슘 제조에서 교반속도와 첨가제가 Vaterite 함유량에 미치는 영향)

  • Young-Cheol Bak
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.95-101
    • /
    • 2023
  • An experiment was conducted to produce vaterite-type precipitated calcium carbonate from waste oyster shells in order to use them as recyclable resources. Calcined oyster shells containing calcium oxide as their main component were prepared at a temperature of 800℃ for 24 h. The oyster shells were dissolved in nitric acid or hydrochloric acid solution to make 0.1 M calcium nitrate or calcium chloride aqueous solution, and a carbonation reaction was performed using a 0.1 M sodium carbonate aqueous solution under various experimental conditions, which included varying the amount of aspatic acid additive, the amount of NH4OH added, the reaction time, the reaction temperature, the stirring speed, and the type of dissolved acid. The XRD, SEM, and size distributions were analyzed and the vaterite content was calculated. Spherical precipitated calcium carbonate with a vaterite content of 95.9% was synthesized by adding 0.1 mol aspatic acid/1 mol CaO and 2 cm3 of NH4OH, and reacting for 1 h at 25℃ while stirring at 600 rpm. The average particle diameter was found to be 12.11 ㎛. Calcium carbonate contatining high vaterite is used as high value added calcium carbonate for medical, food, inke additiver, etc.

Quality Comparison of Activated Carbon Produced From Oil Palm Fronds by Chemical Activation Using Sodium Carbonate versus Sodium Chloride

  • MAULINA, Seri;HANDIKA, Gewa;Irvan, Irvan;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2020
  • Using Na2CO3 versus NaCl as chemical activator, we compared the quality of activated carbon produced from oil palm fronds as raw material. These activators were selected for comparison because both are readily available and are environmentally friendly. In the manufacturing, we used Indonesian National Standard (SNI 06-3730-1995) parameters. For the quality comparison, we determined activated-carbon yield, moisture, ash, volatiles, and fixed-carbon contents; and adsorption capacity of iodine. The best characteristics, assessed by morphological surface analysis and Fourier transform infrared (FTIR) spectral analysis, were observed in the carbon activated by Na2CO3 at an activator concentration of 10% and carbonization temperature of 400 ℃. The results were as follows: activated-carbon yield, 84%; water content, 8.80%; ash content, 2.20%; volatiles content, 14.80%; fixed-carbon content, 68.60%; and adsorption capacity of iodine, 888.51 mg/g. Identification using the FTIR spectrophotometer showed the presence of the functional groups O-H, C=O, C=C, C-C, and C-H in the Na2CO3-activated carbon.

Comparison of Retention of Calcium Carbonate and Mechanical and Optical Properties of Sheets in Various Retention System (여러 가지 보류시스템에서 탄산칼슘의 보류와 종이의 기계적·광학적 특성의 비교)

  • Paik, Ki-Hyon;Ahn, Byoung-Jun;Shon, Sang-Don
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.315-320
    • /
    • 1996
  • In this paper, we investigated the retention amounts(ash contents) according to the addition amounts of retention aid and calcium carbonate and compared the mechanical and optical properties of sheets under the same ash content. As the addition amounts of retention aid increase, the retention of calcium carbonate, that is, ash contents of sheets increase in all retention system. In this case, the sheets included ash content as already expected is produced by adjusting the addition amounts of retention aid and calcium carbonate. Tensile index, burst index, tear index, internal bonding strength of sheets straightly decrease as the ash content of sheets increases. Especially, in the same ash content, all sorts of strength are high in compozil system, low in dual polymer system. Opacity increases along with according to the increase of ash content, and is high in hydrocol system, the worst in dual polymer system. In equal opacity, the strength of paper decreases compozil, hydrocol, and dual polymer system in order. But to judge she superiority or inferiority of retention aids, it should consider the various factors such as the optimum production and process conditions besides the retention amounts of filler and the sheet strength.

  • PDF

Characteristics of Gaeryangmerou Wine deacidified by Calcium Carbonate (탄산칼슘 처리에 의한 개량머루주의 감산 특성)

  • Kim, Chan-Woo;Jeon, Jin-A;Kang, Ji-Eun;Choi, Han-Seok;Yeo, Soo-Hwan;Jeong, Seok-Tae
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.6
    • /
    • pp.559-564
    • /
    • 2016
  • We investigated the effect of calcium carbonate on the quality of wine obtained from Gaeryangmerou (Vitis. spp.), grapes, which are commonly used in wine making in Korea. Alcoholic fermentation was carried out at $25^{\circ}C$, for 7 days in the presence of 0.1%, 0.2%, and 0.3% calcium carbonate. As calcium carbonate concentration increased, the pH of wine increased, while its total acid content and redness decreased. Calcium carbonate treatment during precipitation and aging is more effective than during fermentation. Concentrations of alcohol, total anthocyanin, polyphenol, and tannin showed no significant differences between controls and deacidified groups. Tartaric and malic acids were found to be the major acids in Gaeryangmerou wine. Calcium carbonate reduced total acidity by precipitating tartaric acid. In the sensory evaluation of the acidity, and overall acceptability, wine treated with 0.1% calcium carbonate was the best. Higher calcium carbonate concentration, was associated with greater reduction in total wine acidity. However, it is necessary to maintain the calcium carbonate concentration within 0.1% since excessive amounts of calcium carbonate can have a negative effect on wine quality.

A Study on Alkaline Degradation of Cotton Fabric in Washing (세척시 알칼리에 의한 면섬유의 손상에 관한 연구)

  • 박선경;김성련
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 1992
  • This study was carried out to compare the effect of caustic soda with the effect of caustic potash on cotton fabric. Instead of caustic potash, sodium carbonate similar in chemical composition to caustic potash was used. The damage of cotton cellulose by repeated washing in various alkaline solutions at 8$0^{\circ}C$, 60 rpm was examined. The damage of cotton cellulose by the variation of copper number, carboxyl content, degree of polymerization and retained tensile strength was estimated. The results obtained at this study are as follows; 1. The damage of cotton by caustic soda was severer than caustic potash. The retained tensile strength at 50 washing cycle in caustic soda was 59% and in sodium carbonate was 80%. 2. By adding soap to caustic soda, the damage of cotton fabric decreased because contact area between fabric and air diminished by foam. 3. Detergency of EMPA 101 in caustic soda was lower than sodium carbonate. Consequently, using caustic soda that damage fabric severely and have lower detergency for caustic potash is unreasonable.

  • PDF

Corrosion of AI-Fe Coatings for Wet-Seal Area in Molten Carbonate Fuel Cells

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.98-101
    • /
    • 2004
  • The corrosion behavior of Al-Fe coatings was studied in the wet-seal atmosphere of molten carbonate fuel cells (MCFC). Fe-8Al, Fe-16Al, Fe-25Al, Fe-36Al, and Fe-70Al (in at.%) specimens were tested in Li/K carbonate at $650^{\circ}C$ by a single cell test and an immersion test. In general, the corrosion resistance of the Al-Fe coatings was enhanced due to the formation of a protective $LiAlO_2$ layer. However, when the Al-Fe coatings didn't have sufficient content of aluminum enough for maintaining the protective layer, the corrosion resistance of the Al-Fe coatings was severely degraded by the growth of non-protective scales like $LiAlO_2$. The test results revealed that the aluminum contents in the coatings should be higher than 25 at.% in order to form and maintain the protective $LiAlO_2$ layers.

Effects of Filler Types and Content on Shrinkage Behavior of Polypropylene Composites

  • Jung, Chun-Sik;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.107-113
    • /
    • 2022
  • The effects of fillers [talc, calcium carbonate, glass fiber, and EBR (ethylene-butene rubber)] on the shrinkage and mechanical properties of injection-molded polypropylene composites were investigated. The shrinkage correlated with the shape of the filler particles: at the same amount added, glass fibers with a large aspect ratio had the greatest effect on the shrinkage of polypropylene composites, followed by flake-shaped talc and granular calcium carbonate. It was confirmed that the addition of EBR rubber as an impact strength modifier reduced shrinkage proportionally to the added content. In addition, the addition of glass fiber resulted in the greatest increases in tensile and flexural strengths.

A Study on the Reduction of Gossypol Levels by Mixed Culture Solid Substrate Fermentation of Cottonseed Meal

  • Zhang, Wenju;Xu, Zirong;Sun, Jianyi;Yang, Xia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1314-1321
    • /
    • 2006
  • The objective of this work was to study the effect of mixed culture solid substrate fermentation of C. tropicalis ZD-3 with A. niger ZD-8 on detoxification of cottonseed meal (CSM), and to investigate the effect of fermentation period, proportion of CSM in substrate, sodium carbonate, minerals and heat treatment on the reduction of free gossypol levels during mixed culture solid substrate fermentation of CSM. Experiment 1: Three groups of disinfected CSM substrate were incubated for 48 h after inoculation with either of the fungi C. tropicalis ZD-3, A. niger ZD-8 or mixed culture (C. tropicalis ZD-3 with A. niger ZD-8). One non-inoculated group was used as the control. Levels of initial and final free gossypol (FG), CP and in vitro CP digestibility were assayed. The results indicated that mixed culture fermentation was far more effective than single strain fermentation, which not only had higher detoxification rate, but also had higher CP content and in vitro digestibility. Experiment 2: CSM substrates were treated according to experimental variables including fermentation period, proportion of CSM in substrate, sodium carbonate, minerals and heat treatment, Then, the treated CSM substrates were inoculated with mixed culture (C. tropicalis ZD-3 with A. niger ZD-8) and incubated at $30^{\circ}C$ for 36 h in a 95% relative humidity chamber. After fermentation ended, FG and CP content of fermented CSM substrate was assayed. The results showed that the appropriate fermentation period was 36 h, and the optimal proportion of CSM in substrate was 70%. Addition of sodium carbonate to CSM substrate was beneficial for fermentative detoxification. Heat treatment could facilitate fermentative detoxification, and supplementation with minerals was instrumental in reducing gossypol levels during mixed culture solid substrate fermentation of CSM.

Effects of Soil Chemical Properties on the Distribution and Forms of Heavy Metals in Paddy Soils near Zine Mines (아연광산 주변 논토양에서 토양(土壤) 화학성(化學性)이 중금속의 형태(形態) 및 그 분포(分布)에 미치는 영향)

  • Hyun, Hae-Nam;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.183-191
    • /
    • 1991
  • A study was conducted to determine the influence of soil chemical properties on the distribution and forms of cadmium (Cd), lead (Pb), copper(Cu) and Zinc(Zn) in paddy soils near zinc mines. A sequential extraction procedure was used to fractionate the heavy metals in soils into the designated from of water soluble, exchangeable, organically bound, oxide/carbonate, and sulfide/residual. The predominant form of Cd, Pb, Cu and Zn in the soils was found to be sulfide/residual form. Oxide/carbonate Cd and Pb and organically bound Cu were high, while exchangeable Pb and Cu were very low. Water soluble Cd, Pb and Cu were not detected in the soils. The percentages of the heavy metals content in exchangeable fractions were inversely correlated with those in sulfide/residual fractions in the soils. Exchangeable Cd and Zn and the oxide/carbonate Pb were shifting to the sulfide/residual form with soil depth and the chemical forms of Cu were not changed. Organically bound Cu was positively correlated with soil organic matter content but Cd, Pb and Zn were not. The percentages of Cd, Pb and Zn content in exchangeable forms decreased with soil pH, while those in oxide/carbonate and sulfide/residual forms increased with soil pH. The amounts of oxide/carbonate and sulfide/residual forms of pb were higher than those of Cd and Zn at same soil pH.

  • PDF