• 제목/요약/키워드: carbon-reduction

검색결과 2,334건 처리시간 0.032초

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

황산염환원균을 이용한 폐광폐수의 중금속 제거 (Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria)

  • 백병천;김광복
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Process of Community-based Sustainable CO2 Management

  • Park, Jae-Hyun;Hong, Tae-Hoon
    • Journal of Construction Engineering and Project Management
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, $CO_2$ management on a national level is still not an area of focus. Therefore, this study proposed a community-based $CO_2$ management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target $CO_2$ reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based $CO_2$ management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells

  • Park, Hee-Young;Jeon, Tae-Yeol;Lee, Kug-Seung;Yoo, Sung Jong;Sung, Young-Eun;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.269-276
    • /
    • 2016
  • Carbon-supported ordered Pt-Ti alloy nanoparticles were prepared as a durable and efficient oxygen reduction reaction (ORR) electrocatalyst for polymer electrolyte membrane fuel cells (PEMFCs) via wet chemical reduction of Pt and Ti precursors with heat treatment at $800^{\circ}C$. X-ray diffraction analysis confirmed that the prepared electrocatalysts with Ti precursor molar compositions of 40% (PtTi40) and 25% (PtTi25) had ordered $Pt_3Ti$ and $Pt_8Ti$ structures, respectively. Comparison of the ORR polarization before and after 1500 electrochemical cycles between 0.6 and 1.1 V showed little change in the ORR polarization curve of the electrocatalysts, demonstrating the high stability of the PtTi40 and PtTi25 alloys. Under the same conditions, commercial carbon-supported Pt nanoparticle electrocatalysts exhibited a negative potential shift (10 mV) in the ORR polarization curve after electrochemical cycling, indicating degradation of the ORR activity.

PROCESS OF COMMUNITY-BASED SUSTAINABLE CO2 MANAGEMENT

  • Jaehyun Park;Taehoon Hong
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.262-268
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, CO2 management on a national level is still not an area of focus. Therefore, this study proposed a community-based CO2 management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target CO2 reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based CO2 management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

  • PDF

탄소 소재 치밀화 공정의 밀도향상을 위한 최적 조건 설정 (Finding Optimal Conditions for the Densification Process of Carbon Materials)

  • 권충희;양재경
    • 산업경영시스템학회지
    • /
    • 제40권3호
    • /
    • pp.76-82
    • /
    • 2017
  • Recently, the material industry in the world has started appreciating the value of new materials that can overcome the limitation of steel material. In particular, new materials are expected to play a very important role in the future industry, demonstrating superior performance compared to steel in lightweight materials and ability to maintain in high temperature environments. Carbon materials have recently increased in value due to excellent physical properties such as high strength and ultra lightweight compared to steel. However, they have not overcome the limitation of productivity and price. The carbon materials are classified into various composites depending on the purpose of use and the performance required. Typical composites include carbon-glass, carbon-carbon, and carbon-plastic composites. Among them, carbon-carbon composite technology is a necessary technology in aviation and space, and can be manufactured with high investment cost and technology. In this paper, in order to find the optimal conditions to achieve productivity improvement and cost reduction of carbon material densification process, the correlation between each process parameters and results of densification is first analyzed. The main process parameters of the densification process are selected by analyzing the correlation results. And then a certain linear relationship between major process variables and density of carbon materials is derived by performing a regression analysis based on the historical production result data. Using the derived casualty, the optimal management range of major process variables is suggested. Effective process operation through optimal management of variables will have a great effect on productivity improvement and manufacturing cost reduction by shortening the lead time.

배출권거래제의 국제적 적용이 한국산업과 무역에 미치는 효과 (The effect of international linkage of emissions trading markets on Korean industries)

  • 오경수
    • 무역학회지
    • /
    • 제47권1호
    • /
    • pp.115-130
    • /
    • 2022
  • In this study, I focus on analyzing how the effects of implementing ETS are different depending on whether Korean ETS linking with carbon markets in other countries. The global computable general equilibrium (CGE) model built in this study analyzes the chages in the production and trade of industrial sectors according to the international linkage of ETS compared to the reference scenario of emissions reduction targets and implementation of ETS. From the analysis of internatioanl linkage of carbon markets scenarios, Annex B countries-South Korea carbon market linkage with individual ETS in China worse the economic outcomes in South Korea the most. This means South Korea lose the international competitiveness compared to China in this scenario. On the other hand, Annex B-China carbon market linkage with Korean individual ETS implementation reduce the decreases in production and trading. The most effective way is to join a global emissions trading market with China. The results are consistent in most industries of South Korea. These results are caused by that the supply of emission allowance is increased and the price of emissions allowances is dropped by China's participation to the carbon market, which can be understood to reduce the carbon reduction cost for industrial sectors. In addition, it can be also concluded that the determinant of the negative impact of ETS on changes in production and trade is more sensitive to the price of emissions allowances than to the characteristics of production and trade structure.

네자리 Schiff Base 전이금속(II) 착물들에 의한 SOCl$_2$의 전기화학적 환원 : 촉매 효과 (Electrochemical Reduction of Thionyl Chloride by Tetradentate Schiff Base Transition Metal(II) Complexes : Catalytic Effects)

  • 김우성;최용국;김찬영;조기형;김종순
    • 대한화학회지
    • /
    • 제37권8호
    • /
    • pp.702-710
    • /
    • 1993
  • 이핵성 네자리 schiff base Co(II), Ni(II), Cu(II) alc Fe(II) 착물들을 촉매로 사용하여 몰리브데늄 전극과 유리질 탄소 전극에서 SOCl2의 전기화학적 환원반응을 조사하였다. 이들 전이금속(II) 착물들은 먼저 전극 표면에 흡착된 후 촉매로 작용하였으며, 각각의 전이금속(II) 착물들의 촉매 화합물은 SOCl$_2$ 를 환원시킬 수 있는 최적 조건의 농도를 나타냈다. SOCl$_2$의 환원반응에 대한 촉매 효과는 몰리브데늄 전극에서보다 유리질 탄소전극에서 더 크게 나타났고, 환원 전류는 최고 120% 정도 증가하였다. 주사속도 증가에 따른 SOCl$_2$의 환원 전류는 증가하였고 환원 전위는 음전위쪽으로 이동되었으며, SOCl$_2$의 환원과정은 확산지배적인 반응으로 진행되었다.

  • PDF

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Photosynthesis of Guard Cell Chloroplast

  • Goh, Chang-Hyo
    • Journal of Photoscience
    • /
    • 제6권1호
    • /
    • pp.29-36
    • /
    • 1999
  • Chlorophasts are a central structural feature of stomatal guard cells. Guard cell chloroplasts have both photosystems I and II (PS I and II), carry out O2 evoluation , cyclic and noncyclic photophosporylation, and possess the Calvin-Benson cycle enzymes involved in CO2 fixation. These imply that guard cell chloroplasts have a normal photosynthetic carbon reduction pathway just like their mesophyll counterparts, indicating similar fuctional organization of thylakoid membranes in both types of mesophyll and guard cell chloroplasts. It has been, however, found that guard cell chloroplasts have distinctive and comparative properties in their photosynthetic performance. In this article, I review the intrinsic features on the light reaction of and carbon reduction by guard cell chloroplasts.

  • PDF