Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.4.269

Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells  

Park, Hee-Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Jeon, Tae-Yeol (Pohang Accelerator Laboratory)
Lee, Kug-Seung (Pohang Accelerator Laboratory)
Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Sung, Young-Eun (School of Chemical and Biological Engineering, Seoul National University)
Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.4, 2016 , pp. 269-276 More about this Journal
Abstract
Carbon-supported ordered Pt-Ti alloy nanoparticles were prepared as a durable and efficient oxygen reduction reaction (ORR) electrocatalyst for polymer electrolyte membrane fuel cells (PEMFCs) via wet chemical reduction of Pt and Ti precursors with heat treatment at $800^{\circ}C$. X-ray diffraction analysis confirmed that the prepared electrocatalysts with Ti precursor molar compositions of 40% (PtTi40) and 25% (PtTi25) had ordered $Pt_3Ti$ and $Pt_8Ti$ structures, respectively. Comparison of the ORR polarization before and after 1500 electrochemical cycles between 0.6 and 1.1 V showed little change in the ORR polarization curve of the electrocatalysts, demonstrating the high stability of the PtTi40 and PtTi25 alloys. Under the same conditions, commercial carbon-supported Pt nanoparticle electrocatalysts exhibited a negative potential shift (10 mV) in the ORR polarization curve after electrochemical cycling, indicating degradation of the ORR activity.
Keywords
Oxygen reduction reaction; Electrocatalyst; Platinum-titanium alloy; Durability; Polymer electrolyte membrane fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruna and F. J. DiSalvo, J. Am. Chem. Soc., 2008, 130, 5452-5458.H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruña and F. J. DiSalvo, J. Am. Chem. Soc., 2008, 130(16), 5452-5458.   DOI
2 G. Saravanan, H. Abe, Y. Xu, N. Sekido, H. Hirata, S.-i. Matsumoto, H. Yoshikawa and Y. Yamabe-Mitarai, Langmuir, 2010, 26(13), 11446-11451.   DOI
3 C. Schottle, D. E. Doronkin, R. Popescu, D. Gerthsen, J.-D. Grunwaldt and C. Feldmann, Chem. Commun., 2016, 52(37), 6316-6319.   DOI
4 Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruña and F. J. DiSalvo, J. Am. Chem. Soc., 2014, 136(29), 10206-10209.   DOI
5 E. Ding, K. L. More and T. He, J. Power Sources, 2008, 175(2), 794-799.   DOI
6 H. C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 1973, 95(5), 1669-1671.   DOI
7 N. T. K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 2014, 114(15), 7610-7630.   DOI
8 A. Holewinski and S. Linic, J. Electrochem. Soc., 2012, 159(11), H864-H870.   DOI
9 J. X. Wang, F. A. Uribe, T. E. Springer, J. Zhang and R. R. Adzic, Faraday Discuss., 2009, 140, 347-362.   DOI
10 Q. Dong, S. Santhanagopalan and R. E. White, J. Electrochem. Soc., 2007, 154(9), A888-A899.   DOI
11 S. Gallego, C. Ocal, M. C. Muñoz and F. Soria, Phys. Rev. B, 1997, 56(19), 12139-12142.   DOI
12 S. W. Lee, S. Chen, J. Suntivich, K. Sasaki, R. R. Adzic and Y. Shao-Horn, J. Phys. Chem. Lett., 2010, 1(9), 1316-1320.   DOI
13 J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer, Beilstein J. Nanotechnol., 2014, 5, 44-67.   DOI
14 R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima and N. Iwashita, Chem. Rev., 2007, 107(10), 3904-3951.   DOI
15 GreeleyJ, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, RossmeislJ, ChorkendorffI and J. K. Norskov, Nat. Chem., 2009, 1, 552-556.   DOI
16 S. J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J. H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung and S. J. Yoo, J. Am. Chem. Soc., 2012, 134(48), 19508-19511.   DOI
17 S. J. Yoo, S. J. Hwang, J.-G. Lee, S.-C. Lee, T.-H. Lim, Y.-E. Sung, A. Wieckowski and S.-K. Kim, Energy Environ. Sci., 2012, 5(6), 7521-7525.   DOI
18 S. J. Yoo, K.-S. Lee, S. J. Hwang, Y.-H. Cho, S.-K. Kim, J. W. Yun, Y.-E. Sung and T.-H. Lim, Int. J. Hydrog. Energy, 2012, 37(12), 9758-9765.   DOI
19 K. A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu and R. R. Adzic, Nat. Commun., 2014, 5, 5185.   DOI
20 D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo and H. D. Abruna, Nat. Mater., 2013, 12, 81-87.   DOI
21 B. Arumugam, T. Tamaki and T. Yamaguchi, ACS Appl. Mater. Interfaces, 2015, 7(30), 16311-16321.   DOI
22 T. Tamaki, A. Minagawa, B. Arumugam, B. A. Kakade and T. Yamaguchi, J. Power Sources, 2014, 271, 346-353.   DOI
23 Z. Cui, H. Chen, W. Zhou, M. Zhao and F. J. DiSalvo, Chem. Mater., 2015, 27(21), 7538-7545.   DOI
24 X. Li, L. An, X. Chen, N. Zhang, D. Xia, W. Huang, W. Chu and Z. Wu, Sci. Rep., 2013, 3, 3234.   DOI