• Title/Summary/Keyword: carbon zero

Search Result 256, Processing Time 0.025 seconds

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

Research Trend of Direct Ammonia Anion - Exchange Membrane Fuel Cells (직접 암모니아 음이온 교환막 연료전지 연구 동향)

  • Seonyeob Kim;Ji Eon Chae;Jiseon Choi;Sunyeop Lee;Cheolwoong Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.41-51
    • /
    • 2023
  • As abnormal climatic event occur frequently due to global warming, many nations have proclaimed their commitment to achieving carbon neutrality and are actively pursuing a transition toward a hydrogen economy. At this time, ammonia has garnered significant attention not only as a high-capacity hydrogen carrier but also as a promising candidate as a carbon-free fuel. In particular, anion exchange membrane fuel cells offer the advantage of directly supplying ammonia to the fuel cell, eliminating the necessity for separate ammonia decomposition or hydrogen purification. Therefore, in this study, the operation principle and research trend of the anion exchange membrane fuel cell are reviewed, and several research using ammonia as a fuel in anion exchange membrane fuel cell are also investigated.

Time-Series Analysis and Estimation of Prospect Emissions and Prospected Reduction of Greenhouse Gas Emissions in Chungbuk (온실가스 배출량 시계열 분석과 전망 배출량 및 감축 감재량 추정 - 충북을 중심으로 -)

  • Jung, Okjin;Moon, Yun Seob;Youn, Daeok;Song, Hyunggyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • In accordance with the enactment of 'the Paris Agreement' in 2015 and 'the Framework Act on Carbon Neutrality and Green Growth for Response to the Climate Crisis' in 2021, each local government has set appropriate reduction target of greenhouse gas to achieve the nationally determined contribution (NDC, the reduction target of 40% compared to 2018) of greenhouse gas (GHG) emissions in 2030. In this study, the current distribution of GHG emissions was analyzed in a time series centered on the Chungbuk region for the period from 1990 to 2018, with the aim of reducing GHG emissions in Chungbuk by 2030 based on the 2030 NDC and scenario. In addition, the prospected reduction by 2030 was estimated considering the projected emissions according to Busines As Usual in order to achieve the target reduction of GHG emissions. Our results showed that GHG emissions in Chungbuk and Korea have been increasing since 1990 owing to population and economic growth. GHG emissions in 2018 in Chungbuk were very low (3.9 %) relative to the national value. Moreover, emissions from fuel combustion, such as cement and lime production, manufacturing and construction industries, and transportation industries, were the main sources. Furthermore, the 2030 target of GHG emission reduction in Chungbuk was set at 40.2% relative to the 2018 value, in accordance with the 2030 NDC and 2050 carbon-zero national scenario. Therefore, when projected emissions were considered, the prospected reduction to achieve the target reduction of GHG emissions was estimated to be 46.8% relative to 2018. The above results highlight the importance of meeting the prospected reduction of GHG emissions through reduction means in each sector to achieve the national and local GHG reduction target. In addition, to achieve the 2030 NDC and 2050 carbon zero, the country and each local government, including Chungbuk, need to estimate projected emissions by year, determine reduction targets and prospect reductions every year, and prepare specific means to reduce GHG emissions.

Effects of Dissolved Compounds in Groundwater on TCE Degradations Reaction by Nanoscale Zero-Valent Iron (나노영가철의 TCE 분해반응 시 지하수 용존물질의 영향)

  • Kim, Tae-Ho;Kim, Hong-Seok;Lee, Jin-Yong;Cheon, Jeong-Yong;Lee, Kang-Kun;Hwang, In-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.413-419
    • /
    • 2011
  • Nanoscale zero-valent iron (NZVI) particles were tested as remediation media for groundwater contaminated by organic pollutants (e.g., TCE, trichloroethylene). The contaminated groundwater contained anions ($NO_3^-$, $Cl^-$, $SO_4^{2-}$, and $HCO_3^-$) and natural organic matter (NOM). Treatability of commercial NZVI particles (NANOFER 25, Nanoiron, Czech) was tested by using a synthetic groundwater and the field groundwater samples. More than 95% of 1.8 mM TCE was removed within 20 hours with a NZVI dosage of 25 g/L ($k=0.15hr^{-1}$). Repetitive degradation experiments revealed that the removal capacity of NANOFER 25 was 0.19 mmole TCE/g NZVI. TCE degradation reactions were not substantially affected by the presence of each anion with concentrations as high as 100 times the average field concentrations. However, when the four anions ($NO_3^-$, $Cl^-$, $SO_4^{2-}$, $HCO_3^-$) were present simultaneously. the degradation reactivity and removal capacity were decreased by 60% ($k=0.069hr^{-1}$) and 10%, respectively. The k value of TCE degradation in the presence of NZVI (25 g/L) with dissovled organic carbon of 2.5 mg/L was also decreased by 84% ($k=0.025hr^{-1}$). In the experiments with the field groundwater, more than 90% of $1.8{\mu}M$ TCE, which is the concentration of TCE at the source zone, was removed within 10 hours with a NANOFER 25 dosage of 25 g/L. The results imply that the contaminated groundwater can effectively be treated by NANOFER 25 with more information on the hydrogeology of the site.

An Experimental Study on Pullout Behavior of Shallow Bearing Plate Anchor (얕은 지압형 앵커의 인발거동특성에 관한 실험적 연구)

  • Hong, Seok-Woo;Kim, Hyung-Kong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.5-18
    • /
    • 2014
  • Depending on the underground load support mechanism, anchors are classified as friction anchors, bearing plate anchors and the recently developed combined friction-bearing plate anchors which combine the characteristics of both the friction and bearing plate type anchors. Even though numerous studies have been performed on bearing plate anchors, there were only few studies performed to observe the failure surface of bearing plate anchors. Furthermore most of the soil materials used on these tests were not real sand but carbon rods. In this study, sand was placed in the soil tank and laboratory tests were performed with bearing plate anchors installed with an embedment depth (H/h) ranging from 1~6. The variation in the pullout capacity and the behaviour of soil with the embedment depth (H/h) were observed. Ground deformation analysis program was also used to analyze soil displacement, zero extension direction, maximum shear strain contours. It was determined from the analysis of the results that at ultimate pullout resistance the deformation was 5 mm and the failure surface occurred in a narrower area when compared with results of the previous researches. It was also observed that the width of the fracture surface gradually becomes wider and expands up to the surface as the deformation increases from 10 mm to 15 mm.

Application of TOC Standards for Managing Refractory Organic Compounds in Industrial Wastewater (난분해성 유기물 관리를 위한 산업폐수 TOC 기준 적용방안 연구)

  • Choi, Ik-Won;Kim, Jae-Hoon;Im, Jong-Kwon;Park, Tae-Jin;Kim, Se-Young;Son, Dae-Hee;Huh, In-Ae;Rhew, Doug-Hee;Yu, Soon-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • The aim of this study is to understand the limitation of organic pollutant indexes ($BOD_5$, $COD_{Mn}$, $COD_{Cr}$) and estimate to set the TOC standard by comparing oxidation rates of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$ and TOC based on the 487 organic compounds and 11 effluents from industrial wastewater containing various and unknown organic compounds. The range of ratio of theoretical oxygen demand (ThOD) to theoretical organic carbon (TOCt) was 0.00~5.33 and average ratio of classes of organic compounds was 2.68~3.70. According to classes of organic compounds, the average ratio of $O_2/C$ was 1.2 (range : 1.02~1.39). The order of oxidation rate for 15 organic compounds was TOC (90.7%) > $COD_{Cr}$ (88.8%) > $BOD_5$ (54.4%) > $COD_{Mn}$ (30.8%) indicating the lower oxidation rate of $BOD_5$ and COD compared with TOC. The ranking for average oxidation rate was $COD_{Cr}$ > $COD_{Mn}$ > $BOD_5$ indicating that $BOD_5$, $COD_{Mn}$ could be underestimated comparing with ThOD of organic compounds in case of industrial wastewater containing high concentration of refractory organic compounds. Most of the relationships between organic pollutant indexes and TOC were higher than 0.9. The ratio of TOC to organic compound indexes decreased in the order : $COD_{Cr}$ (3.4) > $COD_{Mn}$ > (1.9) > $BOD_5$ (0.7).

Analysis of Thermal Environment Impact by Layout Type of Apartment Complexes for Carbon Neutrality Net-Zero: Based on CFD Simulation (공동주택단지 배치유형별 열환경 영향성 분석: 유체역학 시뮬레이션을 기반으로)

  • Gunwon Lee;Youngtae Cho
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.93-106
    • /
    • 2023
  • This study attempted to simulate changes in the thermal environment according to the type of apartment complex in Korea using CFD techniques and evaluate the thermal environment by type of apartment. First, apartment complex types in the 2000s and 2010s were referred from previous studies and four types of apartment complex were extracted from. Second, the layout of the apartment complex and temperature changes were analyzed by the direction of wind inflow. Third, a standardized model was created from each type using tower type, plate type, and mixed driving. Last, CFD simulations were performed by setting up the inflow of wind from a total of eight directions. The temperature was relatively low in the type consisting of only the tower type and the type of placing the tower type in the center of the complex, regardless of the direction of the wind. It was due to the good inflow of wind from these types to the inside of the complex. It can be interpreted because wind flows easily into the complex in these types. The findings showed that wind flow and resulting temperature distribution patterns differed depending on the building type and complex layout type, confirming the need for careful consideration of the complex layout in the early design stage. The results are expected to be used as basic data for creating a sustainable residential environment in the early design stage of apartment complexes in the future.

Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater (도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구)

  • Chang, Soomin;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.252-259
    • /
    • 2018
  • An acidic, real metal-plating wastewater was treated by a fluidized bed membrane reactor introduced with granular activated carbon (GAC) as fluidized media. With GAC fluidization, there was no increase in suction pressure with time at each flux set-point applied. At neutral solution pH, much less fouling rate was observed than acidic pH under GAC fluidization. Higher solution pH resulted in the increase in particle size in metal-finishing wastewater, thus producing a less dense cake structure on membrane. More than 95% of chemical oxygen demand was observed from the fluidized bed membrane reactor under GAC fluidization. Total suspended solid concentration in membrane permeate was near zero. At the raw wastewater pH, no removal of copper and chromium by the fluidized bed membrane reactor was observed. As the pH was increased to 7.0, removal efficiency of copper and chromium was increased considerably to 99 and 94%, respectively. Regardless of solution pH tested, more than 95% of cyanide was removed possibly due to the strong adsorption of organic-cyanide complex on GAC in fluidized bed membrane reactor.

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads (면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석)

  • Han, Sung-Cheon;Choi, Samuel
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.191-203
    • /
    • 2006
  • The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.