• Title/Summary/Keyword: carbon waste

Search Result 928, Processing Time 0.023 seconds

A Biological Study on the Methanol-Utilizing Bacteria (Methanol 자화세균에 관한 생물학적 연구)

  • 이영녹;배광성;박정호
    • Korean Journal of Microbiology
    • /
    • v.16 no.4
    • /
    • pp.170-179
    • /
    • 1978
  • By the successive enrichment culture, more than 250 methanol-utilizing bacteria were isolated from various samples such as soil, waste water and sewage. Two strains of which were selected and tentatively identified as Acinetobacter sp. and Pseudomonas sp. experiments were carried out to determine the growth conditions for the higher biomass yield and to demonstrate the difference to protein composition dependent upon carbon sources of these two species. the results were as follows ; 1. the optimum pH was determined as 8 in the both species. The optimum temperature in Acinetobacter sp. was $25^{\circ}C{\sim}30^{\circ}C$ and pseudomonas sp. was $30^{\circ}C-35^{\circ}C$. The optimum initial concentration of mthanol was determined as 1-2% in Acinetobacter sp. and 2-3% in pseudomonas sp. 2. The optimum concnetrations of nitrogen source, micro-elements, and vitamins such as biotin and thiamine-HCl in Acnetobactar sp. were 1g $(NH_4)_3SO4,\;1{\sim}3mg\;Mn^{++},\;4mg\;Fe^{++},\;10{\mu}g\;biotin,\;and\;100{\mu}g$ thiamine-HCl per liter medium. In the Pseudomonas sp., 2g $(NH_4)_3SO4,\;1mg\;Mn^{++},\;trace\;amounts\;of\;Fe^{++},\;5{\mu}g\;biotin,\;and\;100{\mu}g$ thiamine HCl per liter were effective. Maximum biomass yield was 2.5g/l in Acinetobacter sp. and 4.8g/l in Pseudomonas sp. 3. Protein composition of the two strains exhibited that alkai-labile protein was higher than alkali-stable protein. In Pseudomonas sp., the contents of acid soluble fraction and alkali-stable protein of the cells grown in the methanol medium were higher than in sucrose medium. On the other hand, in Acinetobacter sp., alkalilabile protein of the cells grown in sucrose medium was higher than in methanol medium.

  • PDF

${\alpha}$-Galactosidase from Bacillus megaterium VHM1 and Its Application in Removal of Flatulence-Causing Factors from Soymilk

  • Patil, Aravind Goud G.;Kumar S.K., Praveen;Mulimani, Veerappa H.;Veeranagouda, Yaligara;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1546-1554
    • /
    • 2010
  • A bacterial strain capable of producing extracellular ${\alpha}$-galactosidase was isolated from a sample of sugarcane industrial waste. Microbiological, physiological, and biochemical studies revealed that the isolate belonged to Bacillus sp. Furthermore, based on a 16S rDNA sequence analysis, the new isolate was identified as Bacillus megaterium VHM1. The production of ${\alpha}$-galactosidase was optimized based on various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen sources, respectively. The optimum pH was 7.5 and the enzyme remained stable over a pH range of 5-9. The enzyme was optimally active at $55^{\circ}C$ and thermostable with a half-life of 120 min, yet lost 90% of its residual activity within 120 min at $60^{\circ}C$. One mM concentrations of $Ag^2$, $Cu^2$, and $Hg^{2+}$ strongly inhibited the ${\alpha}$-galactosidase, whereas the metal ions $Fe^2$, $Mn^{2+}$, and $Mg^{2+}$ had no effect on the ${\alpha}$-galactosidase activity, and $Zn^{2+}$, $Ni^{2+}$, and $Ca^{2+}$ reduced the enzyme activity slightly. When treated with the B. megaterium VHM1 enzyme, the flatulence-causing sugars in soymilk were completely hydrolyzed within 1.5 h.

Effect of Organic Acids Fermented from the Settled Sludge and Animal Organic Wastes on the Denitrification (침전 슬러지와 가축분의 유기산화 및 발효유기산이 탈질반응에 미치는 영향)

  • Weon, Seung-Yeon;Park, Seung-Kook;Min, Kyung-Kook;Chung, Keun-Yook;Jun, Byong-Hee;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2005
  • Fermentation efficiencies of organic wastes from the variety of sources were evaluated based on the production of total volatile acids(TVA) in batch reactor. Mixing and pH were not significant factors in producing TVA from the organic wastes. After a 10-day fermentation, final TVA concentrations in piggery, cattle, poultry, and primary settled sludge of domestic wastewater were 8,900, 2,900, 7,370 and 1,630 mg/L, respectively. The pH of organic wastes was decreased from neutral to 5.7. The ratio of TVA to $NH_4{^+}-N$ produced from the animal waste ranged from 11.5 to 30.1, whereas, that in the primary settled sludge of domestic wastewater, was 5.4. Possibility of fermented organic wastes as the electron donors for denitrification in the activated sludge was investigated. In both acclimated and nonacclimated activated sludge, higher denitrification rates were obtained with fermented piggery sludge added than with either methanol or acetate added. The fermented organic acids derived from the primary settled sludge gave the higher denitrification rate ($4.2mg\;NO_3-N/g\;vss{\cdot}hr$) in the acclimated activated sludge. Denitrification rate was $1.5mg\;NO_3-N/g\;vss{\cdot}hr$ in the nonacclimated sludge with the fermented acids from the primary settled sludge of domestic wastewater added.

Status of Membrane Filtration in Japan : Application for Water Supply

  • Minami, Katsuyoshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.55-62
    • /
    • 1997
  • In Japan, the membrane filtration is becoming a common technology for municipal water supply system especially for small plant. 6 years before (1991), the national research project of membrane filtration for small plant has started. The project was named as "MAC 21", MEMBRANE AQUA CENTURY 21. In the project the Ministry of Health and Welfare, 8 universities and 18 water treatment plant companies have been involved. This was the first attempt to research a common theme in joint with government, universities and private companies. After three years, the guide line for membrane filtration application for small plant has been established. This has promoted to install some actual plant. And also, another joint research for "RESEARCH OF MEMBRANE FILTRATION FOR ADVANCED WATER TREATMENT" has started in 1994 and completed in March, 1997. The project was named as MAC21. In the former project the main objectives were removal of turbidity and bacteria from water. However, in new project the objective was establishment of the further advanced membrane filtration technology which would be applicable for trace chemical components removal such as tri-halo-methane pre-courser, agricultural chemicals removal, offensive smell and taste removal and virus removal. For the objectives, application of nanofiltration and hybrid-system, a combination of micro-filtration ultra-filtration with biological, ozone and activated carbon treatment process have been studied. In addition, application of membrane filtration for treatment of back-wash waste water originated from membrane filters and conventional sand filters has.been studied. At the end of March of this year, about 30 membrane filtration plants are actually supplying the water, the total treatment capacity is about 6,000 m$^{3}$/day and another 20 will be installed within one year.led within one year.

  • PDF

Development of Novel Pyrrolidine Organocatalyst

  • Im, Seol-Hui;Gang, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.198-198
    • /
    • 2011
  • Organocatalysis is a relatively new and popular area within the field of chiral molecule synthesis. It is one of the main branches of enantioselective synthesis with enzymatic and organometallic catalysis. In recent years, immense high quality studies on catalysis by chiral secondary amines were reported. These progresses instantly led to different organocatalytic activation concepts, so thousands of researchers from academia and the chemical industry are currently involved in this field and new ideas, new approaches, and creative thinking have been rapidly emerged. Organocatalysts, some of which are natural products, appear to solve the problems of metal catalysts. Compared to metal-based catalysis, they have many advantages including savings in cost, time, and energy, easier experimental procedure, and reduction of chemical waste. These benefits originate from the following factors. First, organocatalysts are generally stable in oxygen and water in the atmosphere, there is no need for special equipments or experimental techniques to operate under anhydrous or anaerobic conditions. Second, organic reagents are naturally available from biological materials as single enantiomers that they are easy and cheap to prepare which makes them suitable for small-scale to industrial-scale reactions. Third, in terms of safety related catalysis, small organic molecules are non-toxic and environmentally friendly. Therefore, the purpose of this research is to develop novel synthetic methods and design for various organocatalyst. Furthermore, it is expected that these organocatalysts can be applied to a variety of asymmetric reactions and study the transition state of these reactions using a metal sulface. Here, we report the synthesis of unprecedented organocatalysts, proline and pyrrolidine derivatives with quaternary carbon center.

  • PDF

Production of Hydrogen Gas by Thermochemical Transition of Lauan in Fixed Bed Gasification (고정층 가스화에 의한 나왕톱밥으로부터 수소제조특성)

  • Jung, Hye-Jin;Kim, Chul Ho;Son, Jae-Ek;Kim, Lae-Hyun;Shin, Hun Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.209-213
    • /
    • 2008
  • The fixed bed gasification reactor with 1 m hight and 10.2 cm diameter was utilized for the hydrogen production from biomass wastes. Lauan sawdust was used for non-catalytic and catalytic gasification reaction as a sample in the fixed bed reactor. The fixed bed temperature and catalyst are the major variables affecting the process operation. Thus, the effect of fixed bed temperature and the catalysts on gas composition were studied at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. The yield of hydrogen was increased at higher temperature in the fixed bed reaction. Fractions of hydrogen, carbon monoxide and methane gas in the product gas increased when sodium carbonate ($Na_2CO_3$) and potassium carbonate ($K_2CO_3$) catalysts were used. Furthermore, sodium carbonate catalyst was more effective to obtain higher hydrogen yield compared to potassium carbonate catalyst.

Synthesis of Biodiesel Using Supercritical Fluid (초임계유체를 이용한 바이오디젤연료의 제조기술)

  • Lee, Youn-Woo;Song, Eun-Seok;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.171-179
    • /
    • 2005
  • Biodiesel is synthesized by transesterification of vegetable or animal oils with alcohols. Since it has similar characteristic with diesel fuel, it can be used as a fuel by mixing with diesel fuel. Moreover, it is advantageous that biodiesel can reduce air pollution emitted from fuel combustion and is produced from sustainable energy, biomass. Recently, many researchers have investigated biodiesel synthesis using supercritical methanol since it is economical due to shorter reaction time and simple separation/purification process, compared with conventional alkali- or acid-catalyzed process. By the development of biodiesel production process from waste edible oil using supercritical methanol, it can be expected to utilize potential energy resources, reduce carbon dioxide emission, and improve environmental conditions.

  • PDF

Evaluation of Organic Matter Sources of Phytoplankton in Paldang Reservoir using Stable Isotope Analysis (팔당호 내 식물플랑크톤 안정동위원소 분석을 통한 유기물 기원 평가)

  • Kim, Jongmin;Kim, Bokyong;Kim, Minseob;Shin, Kisik
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • The organic matter sources of phytoplankton and related environmental factors influencing algal bloom in Paldang reservoir were studied using nitrogen and carbon isotope ratio(${\delta}^{15}N$, ${\delta}^{13}C$). Phytoplankton samples for stable isotope analysis were collected from four points in reservoir using a plankton net. Physicochemical water quality, algal taxa and hydrological data were collected from published monitoring material. Phytoplankton samples were analyzed by IRMS. CN ratio of each sample was very similar to that of phytoplankton from literature cited. ${\delta}^{15}N$ of each sample was decreased during July. Mixing and dilution of nitrogen sources due to increment of influx by concentrated rainfall were considered as the main reason for the decline of ${\delta}^{15}N$. Based on analyzed ${\delta}^{15}N$ value of each sample, nitrogen source of Bughan river sample was presumed to come from soil. The nitrogen sources of Namhan river and Kyeongan stream samples seemed to be sewage or animal waste. Low ${\delta}^{15}N$ value in August (2012) seemed to be influenced by isotope fractionation due to the blooming of nitrogen-fixation blue-green algae (Anabaena spp.). Variation in ${\delta}^{15}N$ values particularly by blue-green algal bloom was considered the important factor for estimating the organic matter sources of phytoplankton.

Physiological Effects of GLT1 Modulation in Saccharomyces cerevisiae Strains Growing on Different Nitrogen Sources

  • Brambilla, Marco;Manuela Adamo, Giusy;Frascotti, Gianni;Porro, Danilo;Branduardi, Paola
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.326-336
    • /
    • 2016
  • Saccharomyces cerevisiae is one of the most employed cell factories for the production of bioproducts. Although monomeric hexose sugars constitute the preferential carbon source, this yeast can grow on a wide variety of nitrogen sources that are catabolized through central nitrogen metabolism (CNM). To evaluate the effects of internal perturbations on nitrogen utilization, we characterized strains deleted or overexpressed in GLT1, encoding for one of the key enzymes of the CNM node, the glutamate synthase. These strains, together with the parental strain as control, have been cultivated in minimal medium formulated with ammonium sulfate, glutamate, or glutamine as nitrogen source. Growth kinetics, together with the determination of protein content, viability, and reactive oxygen species (ROS) accumulation at the single cell level, revealed that GLT1 modulations do not significantly influence the cellular physiology, whereas the nitrogen source does. As important exceptions, GLT1 deletion negatively affected the scavenging activity of glutamate against ROS accumulation, when cells were treated with H2O2, whereas Glt1p overproduction led to lower viability in glutamine medium. Overall, this confirms the robustness of the CNM node against internal perturbations, but, at the same time, highlights its plasticity in respect to the environment. Considering that side-stream protein-rich waste materials are emerging as substrates to be used in an integrated biorefinery, these results underline the importance of preliminarily evaluating the best nitrogen source not only for media formulation, but also for the overall economics of the process.

Parametric Optimization of Feruloyl Esterase Production from Aspergillus terreus Strain GA2 Isolated from Tropical Agro-Ecosystems Cultivating Sweet Sorghum

  • Kumar, C. Ganesh;Kamle, Avijeet;Mongolla, Poornima;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.947-953
    • /
    • 2011
  • A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71-0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of $30^{\circ}C$. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.