• Title/Summary/Keyword: carbon nanotubes(CNT)

Search Result 546, Processing Time 0.025 seconds

Diameter Control of Carbon Nanotubes Using Surface Modified Fe Nano-Particle Catalysts with APS (APS로 표면 처리한 Fe 나노 입자 촉매를 이용한 CNT의 직경제어)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.478-481
    • /
    • 2013
  • Diameter controlled carbon nanotubes (CNTs) were grown using surface modified iron nano-particle catalysts with aminpropyltriethoxysilane (APS). Iron nano-particles were synthesized by thermal decomposition of iron pentacarbonyl-oleic acid complex. Subsequently, APS modification was done using the iron nano-particles synthesized. Agglomeration of the iron nano-particles during the CNT growth process was effectively prevented by the surface modification of nano-particles with the APS. APS plays as a linker material between Fe nano-particles and $SiO_2$ substrate resulting in blocking the migration of nano-particles. APS also formed siliceous material covering the iron nano-particles that prevented the agglomeration of iron nano-particles at the early stages of the CNT growth. Therefore we could obtain the diameter controlled CNTs by blocking agglomeration of the iron nano-particles.

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

Investigation of carbon nanotube growth termination mechanism by in-situ transmission electron microscopy approaches

  • Kim, Seung Min;Jeong, Seojeong;Kim, Hwan Chul
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • In this work, we report in-situ observations of changes in catalyst morphology, and of growth termination of individual carbon nanotubes (CNTs), by complete loss of the catalyst particle attached to it. The observations strongly support the growth-termination mechanism of CNT forests or carpets by dynamic morphological evolution of catalyst particles induced by Ostwald ripening, and sub-surface diffusion. We show that in the tip-growth mode, as well as in the base-growth mode, the growth termination of CNT by dissolution of catalyst particles is plausible. This may allow the growth termination mechanism by evolution of catalyst morphology to be applicable to not only CNT forest growth, but also to other growth methods (for example, floating-catalyst chemical vapor deposition), which do not use any supporting layer or substrate beneath a catalyst layer.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

Selective Growth of Carbon Nanotubes using Two-step Etch Scheme for Semiconductor Via Interconnects

  • Lee, Sun-Woo;Na, Sang-Yeob
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.280-283
    • /
    • 2011
  • In the present work, a new approach is proposed for via interconnects of semiconductor devices, where multi-wall carbon nanotubes (MWCNTs) are used instead of conventional metals. In order to implement a selective growth of carbon nanotubes (CNTs) for via interconnect, the buried catalyst method is selected which is the most compatible with semiconductor processes. The cobalt catalyst for CNT growth is pre-deposited before via hole patterning, and to achieve the via etch stop on the thin catalyst layer (ca. 3nm), a novel 2-step etch scheme is designed; the first step is a conventional oxide etch while the second step chemically etches the silicon nitride layer to lower the damage of the catalyst layer. The results show that the 2-step etch scheme is a feasible candidate for the realization of CNT interconnects in conventional semiconductor devices.

Quality and Yield Improvement Analysis of CNT Oil Sensor (CNT Oil Sensor의 특성과 수율 향상 분석)

  • Park, Jung-Ho;Lee, Eui-Bok;Lau, Vincent;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.682-685
    • /
    • 2011
  • An engine oil sensor based on multiwall carbon nanotubes was fabricated with screen printing method. Since carbon nanotubes are generally intertwined, dispersion of the carbon nanotubes in the binding agent (ethyl cellulose, a-terpineol, frit) is a key factor for large yield of engine oil sensor. By conventional dispersion method, a hand-mill method, the maximum yield was 80% at most. However, we used the hand ultrasonic, in order to increase the yield of the sensors. As a results, our engine oil sensor fabricated by the screen printing method shows excellent yield rate of 97%, when we dispersed a paste by the hand ultrasonic method.

Plasma Process Effect and Selectivity Characteristics of Carbon Nanotube Film Humidity Sensor (CNT 습도센서의 플라즈마처리 효과와 선택성 특성)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.67-72
    • /
    • 2013
  • CNT(carbon nanotube) humidity sensors with plasma treated electrodes exhibit a much faster response time and a higher sensitivity to humidity, compared to untreated CNT and porous Cr electrodes. These results may be partially due to their percolated pore structure being more accessible for water molecules and for expending the diffusion of moisture to the polyimide sensing film, and partially due to the oxygenated surface of CNT films. This paper shows a plasma process effect and selectivity characteristics of CNT film humidity sensor.

  • PDF

First-principle investigations of the binding between carbon nanotubes and poly(acrylonitrile)

  • Lee, Juho
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.304-307
    • /
    • 2015
  • Carbon nanotubes (CNTs) have been widely accepted and used as the enhancer for polymer nano-composites due to their remarkable mechanical properties. Understandably, the CNT fiber-polymer matrix interface plays a major role in determining the properties of the CNT-polymer nano-composites. Here, using the LCAODFT Lab tool available on the EDISON Nano-Physics site, we performed first-principles density-functional theory calculations to determine the atomic configurations and binding energies of the CNTs in contact with polymers. For the polymer matrixes, we chose poly(acrylonitrile) (PAN), which is one of the most well-known polymer matrixes for the carbon nanofiber nanocomposites. Different chiralities and diameters of pristine CNTs were considered, and several PAN-CNT configurations were prepared based on the atomistic positions and directions of cyano group in PAN. The most favorable configuration of PAN was obtained when the PAN bound parallel to the surface of CNT. Our finding indicates the binding configurations are determined by the direction of the cyano group dominantly rather than the atomistic position of PAN, or the symmetry of CNTs. The result of increasing the length of CNT diameter suggests that PAN is inclinable to align evenly on the surface of relatively large size of CNT with the configuration parallel to the surface. These results obtained in this study will provide the starting point for the design of improved PAN-CNT composites for the next-generation ultra-strong and ultra-light carbon nanofibers.

  • PDF

Electrical characteristics of 4H-SiC MIS Capacitors With Ni/CNT/SiO2 Structure (Ni/CNT/SiO2 구조의 4H-SiC MIS 캐패시터의 전기적 특성)

  • Lee, Taeseop;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.620-624
    • /
    • 2014
  • In this study, the electrical characteristics of Ni/CNT/$SiO_2$ structures were investigated in order to analyze the mechanism of carbon nanotubes in 4H-SiC MIS device structures. We fabricated 4H-SiC MIS capacitors with or without carbon nanotubes. Carbon nanotubes were dispersed by isopropyl alcohol. The capacitance-voltage (C-V) is characterized at 300 to 500K. The experimental flat-band voltage ($V_{FB}$) shift was positive. Near-interface trapped charge density and oxide trapped charge density values of Ni/CNT/$SiO_2$ structure were less than values of reference samples. With increasing temperature, the flat-band voltage was negative. It has been found that its oxide quality is related to charge carriers or defect states in the interface of 4H-SiC MIS capacitors. Gate characteristics of 4H-SiC MIS capacitors can be controlled by carbon nanotubes between Ni and $SiO_2$.