• Title/Summary/Keyword: carbon nanotubes(CNT)

Search Result 545, Processing Time 0.033 seconds

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • Choe, Eun-Chang;Park, Yong-Seop;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

Distinct Mechanisms of DNA Sensing Based on N-Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity

  • Kim, Han Seul;Lee, Seung Jin;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.415.1-415.1
    • /
    • 2014
  • Carrying out first-principles calculations, we study N-doped capped carbon nanotube (CNT) electrodes applied to DNA sequencing. While we obtain for the face-on nucleobase junction configurations a conventional conductance ordering where the largest signal results from guanine according to its high highest occupied molecular orbital (HOMO) level, we extract for the edge-on counterparts a distinct conductance ordering where the low-HOMO thymine provides the largest signal. The edge-on mode is shown to operate based on a novel molecular sensing mechanism that reflects the chemical connectivity between N-doped CNT caps that can act both as electron donors and electron acceptors and DNA functional groups that include the hyperconjugated thymine methyl group[1].

  • PDF

Using Focus Ion Beam Carbon Nanotube Tip Manipulation (Focus Ion Beam을 이용한 탄소나노튜브 팁의 조작)

  • Yoon Y.H.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.461-462
    • /
    • 2006
  • This paper reports on the development of a scanning probe microscopy(SPM) tip with caborn nanotubes. We used an electric field which causes dielectrophoresis(DEP), to align and deposit CNTs on a metal-coated SPM tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip align toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for scanning probe microscopy.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing

  • Quang, Pham;Jeong, Young-Gi;Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Soon-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.980-981
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of Carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

Spray-coated single-wall carbon nanotube film strain sensor (스프레이코팅 방식으로 제작된 단일벽 탄소나노튜브막 스트레인센서)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.29-33
    • /
    • 2012
  • We demonstrated the viability of fully microfabricating SWCNT(single-wall carbon nanotube) film strain sensors for force and weight sensing. Our spray-deposited SWCNT film strain sensors showed good linearity over a range from 0 to 400 microstrain, and much higher sensitivity compared to commercial metal foil-type gauges. The number of grids and the thickness of the SWCNT film were found to have a significant effect on the strain sensing properties of the SWCNT film gauges. A strain sensing methode for the CNT-based strain gauges was also investigated using a binocular type beam load cells. Preliminary results indicate that the microfabrication method shown here is promising for developing a commercial strain gauge using a spray-coated SWCNT thin film. In the near future, various studies will be performed to further enhance the properties of the spray-coated SWCNT film strain sensors.

  • PDF

A Novel Manufacturing Method for Carbon Nanotube/Aramid Fiber Filled Hybrid Multi-component Composites

  • Song, Young-Seok;Oh, Hwa-Jin;Jeong, Tai-Kyeong T.;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • A novel manufacturing method for hybrid composites filled with carbon nanotubes (CNTs) and aramid fibers is proposed. To disperse the CNTs in the epoxy matrix with the presence of aramid fibers, CNT/polyethyleneoxide (PEO) composites are prepared and utilized because PEO is miscible in the epoxy resin. After thin films are made of the CNT/PEO composite and placed together with the aramid fibers, the epoxy resin is infused to them. The PEO is dissolved in the epoxy and then the CNTs are dispersed in the PEO/epoxy matrix between aramid fibers before the pre-heated matrix is cured. It is found that the PEO is completely miscible with the epoxy resin and CNTs are dispersed well in the space between the aramid fibers.

Evaluation of TiO2 Photocatalytic Activity with Addition of Carbon Nanotube (탄소나노튜브(CNT)의 첨가에 따른 TiO2의 광촉매 특성 변화 연구)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.458-465
    • /
    • 2016
  • A $TiO_2$/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid $TiO_2$/CNT (0.005wt%) samples after calcination at $450^{\circ}C$, $550^{\circ}C$ and $650^{\circ}C$ in air are compared with those of pure $TiO_2$ using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure $TiO_2$ with regard to the degradation of methyl orange under visible light irradiation. The $TiO_2$/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure $TiO_2$ owing to not only better adsorption capability of CNT but also effective electron transfer between $TiO_2$ and CNTs. However, the high calcination temperature of $650^{\circ}C$, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into $TiO_2$.