• Title/Summary/Keyword: carbon nanotubes(CNT)

Search Result 545, Processing Time 0.031 seconds

Field emission properties of carbon nanotubes grown by various methods (다양한 방법에 의해 성장된 탄소 나노튜브의 전계방출 특성)

  • Kim, Bu-Jong;Chang, Han-Beet;Kim, Jong-Pil;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1408-1409
    • /
    • 2011
  • Carbon nanotubes (CNTs) were grown on conical tip substrates by using various methods such as electrophoretic deposition, dip-coating, and spray. The scanning electron microscope measurement showed that the spray method ascertained the most uniform deposition of CNTs. The CNT-emitter that was fabricated by the spray method revealed the lowest turn on voltage of electron emission and the highest emission current. In addition, the spray-produced CNT emitter showed the most stable long-term emission characteristics.

  • PDF

Synthesis of Silica Coated Carbon Nanotubes by Sol-Gel Method (졸-겔 법에 의한 탄소나노튜브의 실리카 코팅)

  • Lee, Sang-Hun;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.185-195
    • /
    • 2011
  • Carbon nanotube(CNT) plays an essential role in various fields of nano based science and technology. Recently, silica coated CNT composites are interested because they are useful for the optical, magnetical, and catalytic applications. In this report, carboxyl groups were introduced on the MWCNT using nitric acid. In order to maximize the silica encapsulation efficiency, carboxyl groups of MWCNT reacted with a silane coupling agent were used to prepare silica coated MWCNT. Due to their strong interaction between modified MWCNT and TEOS. Silica layer with a controllable thickness was achieved. Silica coated MWCNT were further utilized as the template for the synthesis of hollow silica nanotubes after $800^{\circ}C$ calcination.

Orientation of Liquid Crystal and Electro-Optic Characteristic Effect of dispersed Carbon nanotubes in In Plane Switching Cell (탄소 나노 튜브가 분산된 수평전기장을 이용한 액정 셀의 액정 방향성과 전기 광학특성 연구)

  • Jeon, Sang-Youn;Baik, In-Su;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.520-521
    • /
    • 2005
  • To observe the orientation of carbon nanotubes (CNTs) dispersed in nematic liquid crystal (NLC), CNT-doped homogeneously-aligned NLC cells driven by in-plane field was fabricated. The CNTs were aligned with a LC director in the initial state, whereas the CNTs disturbed the LC director above critical ac field. We observed motional textures in the form of vertical stripes in the local area between electrodes, which were associated with a deformation of the LC director orientation. This suggests that CNTs start to vibrate three dimensionally with translational motion. The hysteresis studies of voltage-dependent transmittance under dc electric field show that the amount of residual dc is greatly reduced due to ion trapping by CNT.

  • PDF

Effect of Nanomesh Structure Variation on the Friction and Wear Characteristics of Carbon Nanotube Coatings (탄소나노튜브 코팅의 마찰/마모 특성에 대한 나노메쉬 구조의 영향)

  • Kim, Hae-Jin;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.315-319
    • /
    • 2020
  • In various fields, several studies based on carbon nanotubes (CNTs) have been conducted. The results of previous studies, wherein CNT coatings have been incorporated as solid lubricants, demonstrate that the friction and wear characteristics of CNT coatings can be improved through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure comprising CNT strands. In this study, the friction and wear characteristics of the following are compared: CNT coating formed by spin coating of CNT solution, compressed CNT coating, and compressed/heated CNT coating (wherein CNT strands are squeezed through compression and/or heating). It is observed that the friction coefficient of the CNT coating having the largest number of voids between the CNT strands is significantly lower than those of the compressed CNT coating and the compressed/heated CNT coating. The wear tracks of the compressed CNT coating and the compressed/heated CNT coating indicate that some parts become torn or adhere into a lump. However, in the case of the CNT coating, a smooth wear surface is formed by rubbing. Furthermore, as the void space between the squeezed and adhered CNT strands decreases, the resistance to structural deformation increases, thereby resulting in an increased frictional force and a wear pattern that becomes torn or forms a lump. Hence, the results obtained from this study corroborate that the friction and wear characteristics of CNT coatings can be enhanced through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure of CNT coatings.

Effect of Porous Powder on CNTs Dispersibility (다공성 분체가 CNTs의 분산성에 미치는 영향)

  • Lee, Gun Cheol;Kim, Young Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.199-200
    • /
    • 2020
  • In this study, the effect of porous powders on the dispersibility and strength properties of CNTs was examined.As a result of the experiment, it was found that in the case of incorporation of CNT, the compressive strength property was significantly improved by improving the dispersibility of CNT.

  • PDF

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film (소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Effect of Dispersion Method on Formation of Electroless Ni-CNT Coatings (분산법이 무전해 Ni-CNT 복합도금막 형성에 미치는 영향)

  • Bae, KyooSik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.51-55
    • /
    • 2014
  • Ni-CNT(Carbon Nanotubes) composite coating is often used for the surface treatment of mechanical/electronic devices to improve the properties of the Ni coating. For the Ni-CNT coating, the dispersion of CNT fibers is a critical process. In this study, ultrasonic treatment instead of the conventional ball milling was attempted as a dispersion method for the electroless Ni-CNT coating. SEM-EDX analysis was performed and contact angle, sheet resistance, and micro-hardness were measured. Results showed that the ultrasonic treatment was comparable to the ball milling, as a dispersion method, but the difference was negligible. However, combined ball milling and ultrasonic treatment(double treatment) showed much improved micro-hardness value, above 350Hv(close to the value obtained by the Ni-CNT electroplating). In addition, electroless Ni-CNT(double-treated) coatings formed on the thin Ni film deposited by the electroless plating(double coating) showed better mechanical properties. Thus, double treatment and double coating are suggested as an improved electroless Ni-CNT coating method.

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo;Jung, Yeonsu;Jeong, Youngjin;Kim, Hwan Chul;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2012
  • Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.

Fabrication and Characterization of Carbon Nanotube/Cu Nanocomposites by Molecular Level Mixing Process (분자수준 혼합공정을 이용한 탄소나노튜브/Cu 나노복합재료의 제조 및 특성평가)

  • Kim, Kyung-Tae;Cha, Seung-Il;Hong, Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.261-264
    • /
    • 2005
  • Since the first discovery of carbon nanotube (CNT) in 1991, a window to new technological areas has been opened. One of the emerging applications of CNTs is the reinforcement of composite materials to overcome the performance limits of conventional materials. However, because of the difficulties in distributing CNTs homogeneously in metal or ceramic matrix by means of traditional composite processes, it has been doubted whether CNTs can really reinforce metals or ceramics. In this study, CNT reinforced Cu matrix nanocomposite is fabricated by a novel fabrication process named molecular level mixing process. This process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows to be 3 times higher strength and 2 times higher Young’s modulus than Cu matrix. This extra-ordinary strengthening effect of carbon nanotubes in metal is higher than that of any other reinforcement ever used for metal matrix composites.

  • PDF

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.