• 제목/요약/키워드: carbon nanotubes$H_2$

검색결과 198건 처리시간 0.031초

Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors

  • Lv, Mei-Yu;Liu, Kai-Yu;Li, Yan;Wei, Lai;Zhong, Jian-Jian;Su, Geng
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1349-1355
    • /
    • 2014
  • A three-dimensional (3D) $Co_3O_4$/mildly oxidized multiwalled carbon nanotubes (moCNTs)/reduced mildly oxidized graphene oxide (rmGO) ternary composite was prepared via a simple and green hydrolysishydrothermal approach by mixing $Co(Ac)_2{\cdot}4H_2O$ with moCNTs and mGO suspension in mixed ethanol/$H_2O$. As characterized by scanning electron microscopy and transmission electron microscopy, $Co_3O_4$ nanoparticles with size of 20-100 nm and moCNTs are effectively anchored in mGO. Cyclic voltammetry and galvanostatic charge-discharge measurements were adopted to investigate the electrochemical properties of $Co_3O_4$/moCNTs/rmGO ternary composite in 6 M KOH solution. In a potential window of 0-0.6 V vs. Hg/HgO, the composite delivers an initial specific capacitance of 492 $Fg^{-1}$ at 0.5 $Ag^{-1}$ and the capacitance remains 592 $Fg^{-1}$ after 2000 cycles, while the pure $Co_3O_4$ shows obviously capacitance fading, indicating that rmGO and moCNTs greatly enhance the electrochemical performance of $Co_3O_4$.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • ;;오동훈;;정혁;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

단층벽 탄소나노튜브의 고순도 합성 (High Yield Synthesis of Singlewalled Carbon Nanotubes)

  • 김종식;김관하;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.162-163
    • /
    • 2005
  • Singlewalled carbon nanotubes are largely synthesized on Fe-Mo/MgO catalysts by catalytic decomposition of CH4 in H2. Raman data revel that the as-prepared SWNTs have a diameter of about 0.7-1.2nm. It is found that the diameter of the as-prepared SWNTs can be controlled mainly by adjusting the molar ratio of Fe-MO versus the MgO support. The experimental results was documented with scanning electron microscopy(SEM), X-ray Diffractometer(XRD) and Raman spectroscopy.

  • PDF

MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성 (Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD)

  • 김유석;송우석;이승엽;최원철;박종윤
    • 한국진공학회지
    • /
    • 제18권3호
    • /
    • pp.229-235
    • /
    • 2009
  • 본 연구에서는 철(Fe)을 촉매금속으로 사용하고 마이크로웨이브 플라즈마 화학기상증착법(microwave plasma CVD)을 이용하여 얇은 다중벽 탄소나노튜브를 합성하였다. 촉매금속으로 사용된 철은 직류 마그네트론 스퍼터를 사용하여 증착하였으며, 탄소나노튜브의 합성에는 플라즈마 공급원인 수소($H_2$), 탄소 공급원인 메탄($CH_4$)과 함께 미량의 산소($O_2$) 또는 아르곤(Ar)과 함께 물을 수증기의 형태로 사용하였다. 산소 또는 수증기의 추가에 따른 탄소나노튜브의 성장률의 변화를 주사전자현미경으로 조사하였으며, 결정구조를 투과전자 현미경을 통해 관찰하였다. 또한 라만 분광법을 이용하여 추가 주입 기체의 종류에 따른 탄소나노튜브의 결정성의 변화를 분석하였다. 실험결과, 산소를 추가로 주입하였을 때 성장률이 가장 컸고 결정성도 개선되는 것을 확인하였다. 최종적으로 150 분 동안 합성하여 기판 위에 2.7 mm 이상의 수직 정렬된 얇은 다중벽 탄소나노튜브(thin-multiwalled CNTs)를 합성할 수 있었다.

전계 펄스 인가 증발 방법을 이용한 탄소나노튜브의 구조적 특성 연구 (Structural characteristics of carbon nano tubes(CNTs) fabricated by Thermo-electrical Pulse Induced Evaporation)

  • 박혜윤;김현욱;송창은;지현준;최시경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.421-421
    • /
    • 2009
  • Since carbon nanotubes (CNTs) are discovered, tremendous attentions have been paid to these materials due to their unique mechanical, electrical and chemical properties. Thereupon, many methods to produce a large scale of CNTs have been contrived by many scientists and engineers. Thus the examination of growth mechanisms of CNTs, which is essential to produce CNTs in large scale, has been an attractive issue. Though many scientists have been strived to investigate and understand the growth mechanisms of CNTs, many of them still remain controversial or unclear. Here we introduce representative growth mechanisms of CNTs, based on broadly employed fabrication methods of CNTs. We applied Thermo-electrical Pulse Induced Evaporation (TPIE) method based on field and thermal evaporation to synthesis of CNTs. However TPIE method was originally devised to fabricate graphene sheets and $Ge_2Sb_2Te_5$ nanostructures. While performing TPIE experiments to synthesize graphene, we eventually found experimental results widely supporting the growth model of CNTs proposed already. We observed the procedure of growth of CNTs obtained by TPIE method through Transmission Electron Microscopy (TEM). We believe this study provides an experimental basis on understanding and investigating carbon-based nanomaterials.

  • PDF

다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성 (Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes)

  • 국정호;허몽영;양훈;신동훈;박대희;나창운
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

담배 잎-peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine의 정량 (Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase)

  • 권효식;전병숙;박용남
    • 분석과학
    • /
    • 제28권2호
    • /
    • pp.98-105
    • /
    • 2015
  • 버얼리종 담배에서 추출물에서 얻은 peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine 정량 바이오센서를 만들었다. Peroxidase는 dopamine을 dopamine quinone으로 산화시키는 반응의 촉매 역할을 한다. 이 논문은 효소의 농도, pH와 같은 바이오센서의 감응에 영향을 주는 parameter를 조사하였다. 또한, 전극의 감도, 직선성의 범위, 전극의 안정성을 조사하였다. 본 실험에 사용한 dopamine의 정량 센서는 pH 6.50, 0.010 M 인산 완충용액, -0.15 V의 가해준 전압에서 가장 좋은 감응을 나타내었다. 전극의 검출한계(S/N =3)는 2.7×10−6 M이었으며, 5.0×10−2 M dopamine을 이용하여 10회 반복 측정한 상대표준편차는 1.3%이었다.

탄소나노튜브로 강화시킨 Poly(ethylene terephthalate) 나노복합재료 (Carbon Nanotubes Reinforced Poly(ethylene terephthalate) Nanocomposites)

  • 최수희;정영진
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.240-249
    • /
    • 2014
  • 다중벽 탄소나노튜브(MWNT)로 보강된 폴리에스터(PET) 복합재료에 관한 연구를 수행하였다. PET와 MWNT간의 계면결합력을 향상시키기 위하여, MWNT 표면에 bishydroxyethylene-terephthalate(BHET)를 도입하였다. 이렇게 기능화된 MWNT를 0.5~2.0 wt% 범위에서 이축압출기를 이용하여 PET와 용융 혼합하였다. MWNT/PET 복합재료를 필라멘트로 방사하고, 이를 연신 및 열처리하여 특성 분석을 하였다. 이로부터 복합섬유의 결정화 온도와 열분해 온도가 MWNT로 인하여 증가함을 알 수 있었으며, 항복응력과 인성은 MWNT의 1 wt%의 첨가만으로도 30%이상 증가함을 알 수 있었다. 따라서 MWNT를 BHET로 기능화하는 방법은 폴리에스터에 탄소나노튜브를 효과적으로 분산시키고 계면결합력을 증가시키는데 매우 효과적임을 알 수 있었다.

콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성 (Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch)

  • 김준우;정구환
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

Template-Based Carbon Nanotubes Field Emitter

  • Jeong, Soo-Hwan;Lee, Ok-Joo;Hwang, Sun-Kyu;Lee, Kun-Hong
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.78-85
    • /
    • 2001
  • The growth of carbon nanotubes(CNTs) in anodic aluminum oxide(AAO) template and their application to a field emitter are described. AAO templates were fabricated by anodizing bulk aluminum and sputtered thin Al film on Nb-coated Si wafers. After Co catalyst had been electrochemically deposited into the bottom of the pores in AAO template, CNTs were grown by pyrolyzing $C_2H_2$. Depending on the reaction conditions, CNTs grew up to or over the top of the pores in AAO template with different structures. The morphology and structure of CNTs were observed with a scanning electron microscope and a transmission electron microscope. The diameter of CNTs strongly depended on the size of the pores in AAO template and the growing conditions. The electron field emission measurement of the samples resulted in the turn-on field of 1.9-2.2 $V/{\mu}m$ and the field enhancement factor of 2450-5200. The observation of high field enhancement factors is explained in terms of low field screening effect.

  • PDF