• Title/Summary/Keyword: carbon molecular sieve (CMS)

Search Result 14, Processing Time 0.019 seconds

Carbon Molecular Sieve Membranes Derived from Thermally Labile Polymer Containing Polyimide and Their Gas Separation Properties (열분해성 고분자 도입에 따른 탄소분자체막의 기체 투과 특성)

  • Young Moo Lee;Youn Kook Kim;Ji Min Lee;Ho Bum Park
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.182-190
    • /
    • 2003
  • Carbon molecular sieve (CMS) membranes were prepared by the pyrolysis of polyvinylpyrrolidone containing polyimide precursors. We have prepared the polymer precursors, pyrolyzed polymer and investigated the effect of pyrolyzing polymer on the characteristics of carbon structures and gas separation properties of the CMS membranes. Thermogravimetric analysis (TGA) showed the two-step decomposition of polymer precursor. First decomposition of the pyrolyzing polymer began around $400^{\circ}C$ while carbonizing polymer showed the decomposition around $550^{\circ}C$. The gas permeabilities through the CMS membranes were enhanced by the introduction of the pyrolyzing polymer and decreased with increased final pyrolysis temperature. The CMS membrane pyrolyzed at $550^{\circ}C$. derived from precursor containing 5wt% PVP as a pyrolyzing polymer showed gas permeability for $O_2$ of 808 Barrers [$10^{-10}cm^3 (STP)cm/cm^2scmHg]$ and $O_2/N_2$ selectivity of 7.

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.

Separation of $CH_4/CO_2/N_2$ Mixture by Pressure Swing Adsorption (PSA법을 이용하여 $CH_4/CO_2/N_2$ 혼합가스 중에서 메탄의 분리)

  • Cho, Woo-Ram;Jeong, Gu-Hyun;Shin, Young-Hwan;Yoo, Hee-Chan;Na, Byung-Ki
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.389-394
    • /
    • 2011
  • A compact adsorption-based process for removal of carbon dioxide and nitrogen from natural gas has been discussed. Among the adsorption-based processes, especially, the pressure swing adsorption (PSA) process has been a suitable unit operation for the purification and separation of gas because of low operation energy and cost. A step cycle is made up of pressurization, feed, equalization, blowdown and rinse. In this work, the PSA process is composed of zeolite 13X and carbon molecular sieve (CMS) for removal of carbon dioxide and nitrogen from mixed gas containing $CH_4/CO_2/N_2$ (75:21:4 vol%). A CMS selectively removes carbon dioxide and a zeolite 13X separates nitrogen from methane. CMS is investigated experimentally due to the high throughput of the faster diffusing component ($CO_2$). The gas composition of top, bottom and feed tank was measured with the gas chromatography (GC) using TCD detector, helium as carrier gas and packed column for analysis of methane, carbon dioxide, and nitrogen.

Development of high permeable $C-SiO_2$membranes derived from poly (imide siloxane) / PVP blends (폴리 이미드 실록산과 PVP 혼합물로부터 유도된 고 투과성 $C-SiO_2$ 막의 개발)

  • Lee, Ji-Min;Kim, Youn-Kook;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.188-191
    • /
    • 2004
  • Carbon molecular sieve (CMS) membranes have superior gas permeation and separation performance compared with polymeric membranes$^{1.3}$ . Up to now, CMS membranes mostly have been mostly focused on the kinds of precursor and pyrolysis condition (pyrolysis temperature, heating rate, pyrolysis atmosphere).(omitted)

  • PDF