• 제목/요약/키워드: carbon fiber reinforced polymer composite

검색결과 156건 처리시간 0.025초

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

탄소섬유그리드 보강 콘크리트 부재의 거동에 대한 수치해석적 연구 (Numerical Analysis on the Behavior of Carbon Fiber Grid Reinforced Concrete Members)

  • 김학군;정재호;정상균;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.143-148
    • /
    • 1999
  • In this paper we present the results of an analytical investigation on the existing concrete structures which are reinforced with carbon fiber grid. The carbon fiber grid and polymer mortar are utilized in the reinforcement of concrete column, beam, and tunnel lining. The physical and mechanical properties of the carbon fiber grid and polymer mortar were obtained experimentally and then used in the analytical investigation. In the analysis concrete structures are modeled with 3-D solid finite elements and the carbon fiber grid is modeled with space frame elements. Through the investigation reinforcing effect of carbon fiber grid on the existing concrete structures is confirmed.

  • PDF

탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구 (An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members)

  • 박제용;안동준;정상균;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가 (Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type)

  • 박준하;윤순호;김민국
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.186-189
    • /
    • 2024
  • 본 연구는 나노필러가 혼합된 열가소성 탄소섬유강화 복합재료(Carbon fiber reinforced thermoplastic polymer, CFRTP)의 물성을 비교 평가하였다. Polyamide 6 (PA6) 수지에 Multi-wall carbon nano tube (MWCNT), Silicon oxide, Core shell rubber, Aramid nano fiber 등의 다양한 나노필러를 혼합한 후, 이를 기지재(Matrix)로 탄소섬유강화복합 재료(CFRP)를 제조하여 그 물성을 측정하였다. 나노필러의 종류와 혼합비율에 따라, 인장강도, 층간계면결합력 (Inter-laminar shear strength), Izod 충격 강도 등이 측정되었다. 인장 강도와 충격 강도의 경우 Core shell rubber를 혼합한 경우 가장 높은 물성을 가졌으나, 계면결합력은 silicon oxide를 1 wt.% 이하 혼합하였을 때 최적값을 가졌다.

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

탄소섬유시트를 이용한 I형 PFRP 부재의 휨보강 효과 (The Flexural Strengthening Effect of I-Shape PFRP Member Using Carbon Fiber Sheet)

  • 이영근;김선희;이강연;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-7
    • /
    • 2013
  • In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.

Basic Design of High-Speed Riverine Craft Made of Carbon Fiber Reinforced Polymer

  • Han, Zhiqiang;Choi, Jung-kyu;Hwang, Inhyuck;Kim, Jinyoung;Oh, Daekyun
    • 대한조선학회논문집
    • /
    • 제57권4호
    • /
    • pp.241-253
    • /
    • 2020
  • The Small-Unit Riverine Craft (SURC) is a small high-speed vessel used by navies and marine corps in relatively shallow waterway environments, such as riverine areas or littoral coasts. In the past, SURCs have primarily been rigid-hulled inflatable boats constructed using composite materials such as glass fiber reinforced plastics. More recently, single-hull SURCs have been manufactured using aluminum for weight reduction. In this study, a Carbon Fiber Reinforced Polymer (CFRP) material was applied instead to examine its feasibility in the basic design of an SURC with a hull length of 10 m. The CFRP structural design was obtained using the properties of a marine CFRP laminate, determined in a previous study. Next, the designed CFRP SURC was modeled to confirm its functionality, then compared with existing aluminum SURCs, indicating that the CFRP SURC was 41.49 % lighter, reduced fuel consumption by 30 %, and could sail 50 NM further for every hour of engine operation. A method for reducing the high cost of carbon fiber was also proposed based on the adjustment of the carbon fiber content to provide the optimum strength where required. The data developed in this study can be used as a basis for further design of CFRP craft.

카플링제를 도입한 탄소섬유/나일론 6 복합재료의 기계적 성질(II) -복합재료의 계면강도 증가- (Mechanical Properties of Carbon Fiber/Nylon 6 Composite Introducing Coupling Agent (II) -Increasing Interfacial Strength of Composite-)

  • Park, Chan Hun;Lee, Yang Hun;Shin, Eun Joo
    • 한국염색가공학회지
    • /
    • 제9권4호
    • /
    • pp.47-53
    • /
    • 1997
  • To improve the interfacial bonding of carbon fiber-nylon 6 composite, carbon fiber(CF) were oxidized by nitric acid treatment, and two types of graft polymer(GP) of nylon 6-g-polyacrylamide (PAAm) -water dispersable GP(WDGP) and m-cresol solu ble GP(CSGP) were treated as coupling agents. Introduction of polar groups such as -COOH, -OH, etc, on the surface of the oxidized CF was confirmed by IR spectra. The stem polymer of nylon 6 in the coupling agent (GP) could be compatible with'matrix nylon 5, and the grafted branch of PAAm on GP could react to the polar groups on the oxidized CF in composite. The interfacial strength was measured by the transverse tensile test to the fiber direction for single CF embedded nylon 6 film especially prepared and by the pull-out test method. The interfacial strength of the composite reinforced with oxidized CF is greater than that reinforced with unoxidized CF. The interfacial strength of the composite was increased by treatment of coupling agents(GPs) considerably, and the increasing tendency by the WDGP is greater than that by the CSGP. The optimum conditions of coupling agent treatment are as follows: the concentration, adsorption tlme of GP, and curing temperature are 2%, 20 minutes, and $170^{\circ}$, respectively.

  • PDF