• Title/Summary/Keyword: carbon fiber reinforced composites

Search Result 529, Processing Time 0.028 seconds

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.

Morphology Changes in the Matrix of 2D-Carbon Fiber Reinforced Composites during the Carbonization Process (이차원 구조(2D) 탄소섬유 보강 복합재의 탄화공정중 기질의 형태 변화)

  • Joo, Hyeok-Jong;Yoon, Byeong-Il;Choi, Don-Muk;Oh, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.298-305
    • /
    • 1992
  • The carbonization behaviors of CFRP fabricated with 2D-woven fabric and matrix phenolic resin have been studied. The changes in dimension were observed in the temperature range of 365-37$0^{\circ}C$ in the thickness direction, 118-12$0^{\circ}C$ in the normal direction each other by TMA analysis. Observation with the optical microscope shows that the formed cracks and pores during the fabrication of CFRP were propagated with the increase of pyrolysis temperaure. New cracks and pores were formed in the pyrolysis temperature range of 400-50$0^{\circ}C$ In line with the formation and propagation of cracks, porosity was increased and density was decreased rapidly in the pyrolysis temperature range of from 40$0^{\circ}C$ to 70$0^{\circ}C$. Therefore heating rate in the carbonization process need to be controlled carefully by intervals.

  • PDF

Relations Between Impact Damage and Ply Angle Under Same Impact Energy Condition (同一한 衝擊에너지 條件下의 CFRP 斜交積層板의 衝擊損傷과 配向角의 關係)

  • ;笠野英秋
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1824-1832
    • /
    • 1992
  • This study investigated the compressive Young's modulus and the impactinduced damage of CFRP angle-ply laminate under same impact energy condition. The specimens of angle-ply laminate composites [0.deg.$_{6}$/ .theta..deg.$_{10}$/ 0.deg.$_{6}$] with .theta..deg. =30.deg., 45.deg., 60.deg. and 90.deg. were employed, and damaged by steel balls of diameter of 5mm and 10mm propelled by air gun type impact testing machine. The impact damaged zones were observed through a scanning acoustic microscope(SAM), and their cross-sections were observed through a scanning electron microscope(SEM). The compressive Young's moduli before and after impact were measured, and compared with the theoretical values calculated. The results obtained were as follows: (1) The damage areas on the interfacial boundaries showed more severe change on the back side interface than on the impact side interface with increasing ply-angle. (2) The damage areas on the interfacial boundaries became larger with increasing impact velocity or ply-angle. (3) The impact damaged zone showed the delamination on the interfacial boundaries and transverse cracks inside laminas. (4) The impact damaged zone was affected by the impactor size and speed or ply-angle under same impact energy condition. (5) Compressive Young's moduli before and after impact were lower than theoretical value, but showed a similar change according to ply-angle. (6) Compressive Young's moduli after impact were higher than those before impact, but there was no remarkable change in apparent compressive modulus after impact.t.act.

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian;Huang, Jianxiang;Yu, Xiaojiao;Wang, Canfeng;Huang, Farong;Du, Lei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3706-3710
    • /
    • 2012
  • A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry (시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구)

  • Hyun, Dong Keun;Lee, Byoung Eon;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • The cure kinetics of carbon fiber-reinforced prepreg for Vacuum Bag Only(VBO) process was studied by differential scanning calorimetry (DSC). The total heat of reaction (ΔHtotal = 537.1 J/g) was defined by the dynamic scanning test using prepregs and isothermal scanning tests were performed at 130℃~180℃. The test results of isothermal scanning were observed that the heat of reaction was increased as the temperature elevated. The Kratz model was applied to analyze the cure kinetics of resin based on the test results. To verify the simulation model, the degree of cure from panels using different cure cycles were compared with the measurement. The simulation model showed that the error against the experimental value was less than 3.4%.

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (초고압가스 차량용 연료탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2009
  • In this study, the strength safety of a composite fuel tank which is fabricated by an aluminum liner of Al6061-T6 materials and composite layers of carbon/epoxy-glass/epoxy composites has been analyzed by using a finite element analysis technique. In order to enhance the durability of the composite fuel tank, an autofrettage process was used and compressed natural gas was supplied to the prestressed fuel tank. The FEM computed results on the stress safety of autofrettaged gas tanks were compared with a criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results indicated that the stress safety of autofrettaged fuels tanks shows instability at the dome zone and uniform stability at the parallel body, which provide an evaluation data for a strength safety of autofrettaged composite fuel tanks. The computed results show that the stress safety of 9.2 liter composite fuel tanks satisfied the safety criteria of four evaluation items, which are provided by US DOT-CFFC and KS and indicated a safe design.

  • PDF

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.

Residual Deformation Analysis of Composite by 3-D Viscoelastic Model Considering Mold Effect (3-D 점탄성 모델을 이용한 복합재 성형후 잔류변형해석 및 몰드 효과 연구)

  • Lee, Hong-Jun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • The carbon fiber reinforced plastic manufacturing process has a problem in that a dimensional error occurs due to thermal deformation such as residual stress, spring-in, and warpage. The main causes of thermal deformation are various, including the shape of the product, the chemical shrinkage, thermal expansion of the resin, and the mold effect according to the material and surface condition of the mold. In this study, a viscoelastic model was applied to the plate model to predict the thermal deformation. The effects of chemical shrinkage and thermal expansion of the resin, which are the main causes of thermal deformation, were analyzed, and the analysis technique of the 3-D viscoelastic model with and without mold was also studied. Then, the L-shaped mold effect was analyzed using the verified 3D viscoelastic model analysis technique. The results show that different residual deformation occurs depending on the surface condition even when the same mold is used.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.