• Title/Summary/Keyword: carbon fiber reinforced composite

Search Result 674, Processing Time 0.028 seconds

Characteristics of Elastics Waves of Fiber-Reinforced Plastic with Localized Heat Damage (국부 열손상을 받은 복합재료의 탄성파특성)

  • 남기우;김영운
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.48-53
    • /
    • 2002
  • Fiber-reinforced composites are extensively used in electronic, ship and aerospace applications due to their high strength and high toughess. In these applications, they are often subjected to localized heat damage due to various sources. In order to ensure their reliability, it is important to predict their residual properties using nondestructive evaluation thchniques. Fabric fiber composite specimens were manufactured with six layers of the glass-fiber prepreg and the carbon-fiber prepreg, respectively. The specimens were subjected to a localized heat damage using a heated copper tip with a diameter of 10mm at 35$0^{\circ}C$(CFRP) and 30$0^{\circ}C$(GFRP), respectively. The specimens were then subjected to tension tests while acoustic emission (AE) activities of specimens were collected. The AE activity of all specimens showed three types of distinct frequency regions. Those are matrix cracking, failure of the fiber/matrix interface and fiber breakage.

A Study on the Strength Capacity and the Strengthening Effects of Steel Reinforced Concrete(SRC) Beams with Carbon Fiber Sheets (CFS) and Glass Fiber Sheets (GFS) (탄소섬유 및 유리섬유로 보강한 합성보의 내력산정과 보강효과에 대한연구)

  • 김희규;신영수;최완철;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.565-570
    • /
    • 1997
  • This study is on the strength capacity and the strengthening effects of crarbon fiber sheets(CFS) and glass fiber sheets (GFS) on steel reinforced concrete(SRC) beams. SRC beams are often used on high-rise building construction to save story height and construction cost. However, there are no strengthening design code in Korea and most engineers design it as steel beams ignored the composite effect if reinforced concrete. Test results on steel reinforced concrete beams reveal thar the strength capacity of SRC beam is more than simple addition of steel and reinforced concrete beams. In case of steel reinforced concrete beams, ultimate moment capacity of strengthening beam of carbon fiber sheets is 120% of non-strengthening one.

  • PDF

Development of the Hybrid Composite Journal Bearing (하이브리드 복합재료 저널 베어링의 개발)

  • Kim Seong Su;Park Dong Chang;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.63-66
    • /
    • 2004
  • In this study, a hybrid composite journal bearing composed of carbon fiber reinforced phenolic composite liner and metal backing was manufactured to solve the seizure problem of metallic journal bearing materials because the carbon fiber has self-lubricating ability and the phenolic resin has thermal resistance characteristics. To estimate the wear resistance of carbon fiber phenolic composite, wear tests were performed at several pressures and velocities. The oil absorption characteristics, coefficient of thermal expansion, strength and stiffness of the composite were also tested. Using the measured stiffness values, the thermal residual stresses in the composite were calculated to check the reliability of the composite journal bearing.

  • PDF

Mechanical Properties of Cork Composite Boards Reinforced with Metal, Glass Fiber, and Carbon Fiber

  • Min-Seong, CHA;So-Jeong, YOON;Jin-Ho, KWON;Hee-Seop, BYEON;Han-Min, PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.427-435
    • /
    • 2022
  • For effective applicability of reinforced cork, cork composites reinforced with metal, glass fiber, and carbon fiber were developed, and the effects of the reinforcing materials on the mechanical properties of cork composites were investigated. The bending moduli of elasticity (MOE) of cork composites were in the 32.7-35.9 MPa range, while the bending strength values were in the 1.62-1.73 MPa range. The strength performance decreased in the order cork-metal > cork-carbon fiber > cork-glass fiber. The bending MOEs were improved by 29%-41% compared with simple cork boards, while the bending strengths of reinforced cork were 35%-45% higher. The strength performance significantly improved following the incorporation of thin mesh materials into the middle layer of the studied cork composites. The bending strains of the cork composites were remarkably higher compared with oak wood, making them promising for applications that require bending processing, such as curved jointing. The internal bond strengths of the cork composites were 0.26-0.44 MPa, approximately 0.36-0.60 times lower compared with medium-density fiber boards.

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Cost-effective structural health monitoring of FRPC parts for automotive applications

  • Mitschang, P.;Molnar, P.;Ogale, A.;Ishii, M.
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.135-149
    • /
    • 2007
  • In the automobile industry, structural health monitoring of fiber reinforced polymer composite parts is a widespread need for maintenance before breakdown of the functional elements or a complete vehicle. High performance sensors are generally used in many of the structural health monitoring operations. Within this study, a carbon fiber sewing thread has been used as a low cost laminate failure sensing element. The experimentation plan was set up according to the electrical conductance and flexibility of carbon fiber threads, advantages of preforming operations, and sewing mechanisms. The influence of the single thread damages by changing the electrical resistance and monitoring the impact location by using carbon thread sensors has been performed. Innovative utilization of relatively cost-effective carbon threads for monitoring the delamination of metallic inserts from the basic composite laminate structure is a highlighting feature of this study.

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.