• Title/Summary/Keyword: carbon fiber reinforced composite

Search Result 679, Processing Time 0.025 seconds

Influence of Stacking Sequence on Carbon Fiber/Aramid Fiber Hybrid Composite (탄소섬유/아라미드섬유 하이브리드 복합재료의 적층 순서의 영향 평가)

  • Hyeonho Lee;Seoyeon Bae;Sungbi Lee;Myoung-Gyu Lee;Wonjin Na
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.383-387
    • /
    • 2023
  • Carbon fiber-reinforced composites have excellent mechanical properties. However, the fracture toughness is a disadvantage due to brittle failure mode. The fracture toughness can be enhanced using hybridization with large-elongation fibers. In this study, polyamide (aramid) fibers are hybridized with carbon fiber with various stacking sequences. As a result, the Izod impact strength was enhanced by 63% with 25% aramid fiber hybridization. It is also shown that there is an optimal point in laminated composite hybridization, [CF/CAF2/CF]s stacking sequence.

Effect of Oxy-Fluorinated Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (산소-불소처리된가 탄소섬유 강화 복합재료의 기계적 계면특성에 미치는 영향)

  • Oh Jin-Seok;Lee Jae Rock;Park Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.100-103
    • /
    • 2004
  • In this work, the effects of oxy-fluorination on surface characteristics of carbon fibers were investigated in mechanical interfacial properties of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), FT-IR. and contact angle measurements. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor $(K_{IC})$. As experimental results, the $F_{1S}/C_{1S}$ ratio of carbon fiber surfaces was increased by oxy-fluorination, due to the development of the oxygen containing functional groups. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the oxy-fluorination on fibers. These results could be explained that the oxy-fluorination was resulted in the increase of the adhesion between fibers and matrix in a composite system.

  • PDF

Algae Based Energy Materials (해조류를 이용한 친환경 에너지소재)

  • Han, Seong-Ok
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • Recently, sea algae cultivation as carbon sink and carbon dioxide fixation have been considered. Also, various researches on bioenergy derived from sea algae and the utilization of fibers, saccharide, and lipid of sea algae have been performing. Till now, algae fibers has been used for manufacturing of paper and reinforcing of polymer composites and the extracts of sea algae are used for cosmetics, pharmaceutical materials and food such as agar. Especially, algae fiber has so similar properties to cellulose in terms of crystallinity and functional groups that it can be utilized as reinforcements of biocomposites. Biocomposites as alternatives of glass fiber reinforced polymer composites are environmentally friendly polymer composites reinforced with natural fibers and are actively applying to the automobiles and construction industries. In this paper, characteristics of algae fiber and biocomposites reinforced with algae fiber as environmentally friendly energy materials have been introduced.

  • PDF

Experimental Study for Evaluating Structural Behavior of RC Beams Strengthened by Tapered Ended CFRP Sheets (계단식 단부 형태의 탄소섬유시트로 보강된 RC보의 구조거동 평가에 관한 실험적 연구)

  • Kim, Young-Hee;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.38-44
    • /
    • 2012
  • This paper presents experimental studies aiming at evaluation of structural behaviors of RC (Reinforced Concrete) beams externally strengthened with taper ended CFRPs(Carbon Fiber Reinforced Polymers). Experiments are performed with RC beams having different numbers of CFRP layers and length of each layer. The beams are subjected to four point-bending with simply supported condition. Test results of taper ended CFRPs and non-tapered CFRPs are compared and the better strengthening effect is observed from tapered ended CFRPs.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Carbon Fiber Reinforced Ceramics based on Reactive Melt Infiltration Processes

  • Lenz, Franziska;Krenkel, Walter
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Ceramic Matrix Composites (CMCs) represent a class of non-brittle refractory materials for harsh and extreme environments in aerospace and other applications. The quasi-ductility of these structural materials depends on the quality of the interface between the matrix and the fiber surface. In this study, a manufacture route is described where in contrast to most other processes no additional fiber coating is used to adjust the fiber/matrix interfaces in order to obtain damage tolerance and fracture toughness. Adapted microstructures of uncoated carbon fiber preforms were developed to permit the rapid infiltration of molten alloys and the subsequent reaction with the carbon matrix. Furthermore, any direct reaction between the melt and fibers was minimized. Using pure silicon as the reactive melt, C/SiC composites were manufactured with an aim of employing the resulting composite for friction applications. This paper describes the formation of the microstructure inside the C/C preform and resulting C/C-SiC composite, in addition to the MAX phases.

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

An Estimation of Deformation for Composites by DIC (DIC에 의한 복합재료 변형측정)

  • Kwon, Oh-Heon;Kang, Ji-Woong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2014
  • The estimation of deformation and strain for the twill-weave carbon fiber reinforced plastic composite(CFRP) during the test with a digital image correlation system were implemented experimentally. The carbon fiber reinforced plastic composites have been developed as the edge technology materials. The plain, twill and satin weave types are commonly used for the CFRP composites. Thus, it is essential to find the deformation characteristics for those types of CFRP more easily. Especially the DIC method can express the visual strain distributions at the full range of the interested areas in the structures. In this study, the mechanical properties of twill-weave CFRP composite and the variation of strains in a full field of the specimen were estimated. The experiments were performed under a tensile loading and 3-point bending test with strain gages. Futhermore the DIC deformation results were estimated for the comparison. The results showed the deformation and strain contours visually well in all region of the interested areas and so usefulness for the safety control of the structures.

Crack Detection of Carbon Fiber Reinforced Composites by Electric Potential Method with Bridge Circuit Concept (브리지 회로 개념이 적용된 전기 전위법을 이용한 탄소섬유복합재료의 균열검출)

  • Hwang, Hui-Yun
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • This paper suggested the electric potential method with a bridge circuit concept for the detection of the location and crack growth of carbon fiber reinforced composites to reduce the measurement numbers. 2 pairs of electrodes were fabricated on the center cracked thin composite plates, and potential changes at one pair of adjacent electrodes were observed while external voltage input was applied to the other pair of adjacent electrodes. The effects of the size and interval of electrodes, location and propagating direction of center cracks were investigated by experiments and finite element analyses. Detectable crack size was influenced by the electrode interval rather than the electrode size, and crack detection was enhanced as the size and interval of electrodes were smaller. Besides, output potential changes were larger as the crack grew and was nearer the voltage input electrodes.

An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition (고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.30-36
    • /
    • 2009
  • The failure strengths and modes in carbon fiber reinforced polymeric composites, with two serial bolt-fastened composite joints, were investigated to evaluate the typical joint configurations of composite components. The parametric studies were performed experimentally at room temperature dry and elevated temperature wet, $82.2^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, two basic load-displacements curves are observed. Each failure mode has the characteristic curve. It is showed that the bearing failure mode occurs in elevated temperature wet condition. It is analysed that the strength of bearing failure mode is not highly depending on the effective modulus of specimen. The failure strength at elevated temperature wet is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.