• 제목/요약/키워드: carbon fiber/epoxy composite laminates

검색결과 55건 처리시간 0.022초

탄소 섬유강화 복합재료의 중력 낙하 충격으로 인한 손상 평가 (Drop-weight impact damage evaluation for carbon fiber/epoxy composite laminates)

  • Sohn, Min-Seok;Hu, Xiao-Xhi;Ki, Jang-Kyo;Hong, Soon-Hyung
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.89-92
    • /
    • 2001
  • Drop weight impact tests were performed to investigate the impact behavior of carbon fiber/epoxy composite laminates reinforced by short fibers and other interleaving materials. Characterization techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates. Scanning electron microscopy was used to observe impact damage and fracture modes on specimen fracture surfaces. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking and fiber breakage depending on the interlayer materials. Among the composite laminates tested in this study, the composites reinforced by Zylon fibers showed very good impact damage resistance with medium level of damage, while the composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is expected to deteriorate the bulk strength due to the reduction of fiber volume fraction, even though the damaged area is significantly reduced.

  • PDF

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates

  • Yokozeki, Tomohiro;Iwahori, Yutaka;Ishibashi, Masaru;Yanagisawa, Takashi
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.251-264
    • /
    • 2009
  • Nonlinear mechanical behaviors of unidirectional carbon fiber-reinforced plastic (CFRP) laminates using cup-stacked carbon nanotubes (CSCNTs) dispersed epoxy are evaluated and compared with those of CFRP laminates without CSCNTs. Off-axis compression tests are performed to obtain the stress-strain relations. One-parameter plasticity model is applied to characterize the nonlinear response of unidirectional laminates, and nonlinear behaviors of laminates with and without CSCNTs are compared. Clear improvement in stiffness of off-axis specimens by using CSCNTs is demonstrated, which is considered to contribute the enhancement of the longitudinal compressive strength of unidirectional laminates and compressive strength of multidirectional laminates. Finally, longitudinal compressive strengths are predicted based on a kink band model including the nonlinear responses in order to demonstrate the improvement in longitudinal strength of CFRP by dispersing CSCNTs.

CU175NS 적층판 복합재의 절삭가공특성 연구 (A Study on the Machining Properties of CU175NS Composite Laminates)

  • 김동현;김우순;김경우
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.88-93
    • /
    • 2001
  • Carbon fiber epoxy composite are widely used in airframe structures, space vehicles, sports equipment, and high speed reciprocating parts for industrial machinery. In this paper, the groove processing characteristics of carbon fiber epoxy com-posite was experimentally investigated in order to study the endmill operation of fiber reinforce epoxy composites. Followings are main finding from the experimental results. First, the cutting and bending force in groove processing of the carbon fiber epoxy composite increased as the spindle speed deceased. They also deceased as the table feed increased. Second, the good cutting status obtained at the entrance of groove while delamination occurred at the exit of groove, Third, the regular high speed steel endmill was not efficient, thus the new endmill such as coated carbide rooter endmill or dia-mode endmill should be used for the effective endmll operation of carbon filber epoxy composites.

  • PDF

탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구 (A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate)

  • 이상연;박병준;김재훈;이영신;전제춘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

가로 등방성 복합재료의 파동전파에 관한 연구 (The Wave Propagation in transversely isotropic composite laminates)

  • 김형원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.422-425
    • /
    • 2005
  • 가로 등방성 복합재료에서 반사되거나 굴절된 파동의 속도와 입자방향, 그리고 진폭을 운동방정식과 구성방정식 그리고 파동수와 진동수로 표현된 변위식을 사용하여 구하였다. Snell 법칙을 사용하여 Eigenvalue 문제를 풀어 파동속도를 구하였으며 그 결과는 T300 Carbon fiber/5208 Epoxy 재료 성질을 이용하여 검증하였다. 이러한 분석은 수분 침수 C-scan을 이용하여 가로등방성 복합재료의 결점을 찾아내는데 응용될 수 있다.

  • PDF

가로 등방성 복합재료의 초음파에 관한 연구 (The Wave Propagation in Transversely Isotropic Composite Laminates)

  • 김형원
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.62-69
    • /
    • 2006
  • 가로 등방성 복합재료에서 반사되거나 굴절된 파동의 속도와 입자방향, 그리고 진폭을 운동방정식과 구성방정식 그리고 파동수와 진동수로 표현된 변위식을 사용하여 구하였다. Snell 법칙을 사용하여 Eigenvalue 문제를 풀어 파동속도를 구하였으며 그 결과는 T300 Carbon fiber/5208 Epoxy 재료 성질을 이용하여 검증하였다. 이러한 분석은 수분 침수 C-scan을 이용하여 가로등방성 복합재료의 결점을 찾아내는데 응용될 수 있다.

고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측 (The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass)

  • 조현준;김인걸;이석제;김영아;우경식
    • Composites Research
    • /
    • 제26권6호
    • /
    • pp.349-354
    • /
    • 2013
  • 본 논문에서는 Carbon/Epoxy 복합재 적층판에 대하여 실사격 실험을 수행하였으며, 복합재 적층판의 흡수에너지를 예측하기 위한 개선된 방법을 제시하였다. 고속충격실험 과정에서 충격체의 질량손실을 고속카메라를 통하여 거시적으로 확인하였으며, 따라서 이를 고려하여 복합재 적층판의 흡수에너지를 계산하였다. 고속충격을 받는 복합재 적층판의 흡수에너지를 예측하기 위한 모델을 제시하였으며, 복합재 적층판의 흡수에너지는 크게 정적에너지와 동적에너지로 분류하였다. 정적에너지 계산은 섬유의 파손과 정적 탄성에너지와 관련 있는 준정적 관통실험식을 통해 구한 관통에너지를 사용하였다. 동적에너지는 변형되는 시편의 운동에너지와 손실된 파편 질량들의 운동에너지로 나뉠 수 있다. 최종적으로 충격체 질량손실을 고려하여 예측된 흡수에너지와 실험결과를 비교/분석하였다.

VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성 (Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM)

  • 김연직
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.

전자기 초음파를 이용한 CF/Epoxy 복합적층판의 적층결함 특성평가 (On Characterization for Stacking Fault Evaluation of CF/Epoxy Composite Laminates Using an EMAT Ultrasonics)

  • 임광희;나승우;;이창노;박제웅;심재기;양인영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.254-257
    • /
    • 2004
  • An electromagnetic acoustic transducers (EMAT) can usually generate or detect an ultrasonic wave into specimens across a small gap. Especially stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences there properties. It is very important to evaluate the layup errors in prepreg laminates. A nondestructive technique can therefore serve as a useful measurement for detecting layup errors. It was shown experimentally that this shear waves for detecting the presence of the errors is very sensitive. It is found that high probability shows between tests and the model developed in characterizing cured layups of the laminates. Also a C-scan method was used for detecting layup of the laminates because of extracting fiber orientation information from the ultrasonic reflection caused by structural imperfections in the laminates. Therefore, it was found that interface C-scan images show the fiber orientation information by using two-dimensional fast Fourier transform(2-D FFT).

  • PDF