• Title/Summary/Keyword: carbon dioxide sensor

Search Result 107, Processing Time 0.023 seconds

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor (비분산적외선 CO2 센서를 위한 DBR기반의 패브리 페로-필터 설계 및 성능 연구)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.250-254
    • /
    • 2021
  • A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

Intelligent Diagnostic System of Photovoltaic Connection Module for Fire Prevention (화재 예방을 위한 태양광 접속반의 지능형 진단 시스템)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • To prevent accidents caused by changes in the surrounding environment or other factors, various protection facilities are installed at the photovoltaic connection module. The main causes of fire are sparks due to foreign substances inside the photovoltaic connection module through high temperature rise and dew condensation in the photovoltaic connection module, and fire due to heat from the power diode. The proposed method can predict the fire by measuring flame, carbon dioxide, carbon monoxide, temperature, humidity, input voltage, and current on the photovoltaic connection module, and when the fire conditions are reached, fire alarm and power off can be sent to managers and users in real time to prevent fire in advance.

Non-dispersive infrared carbon dioxide sensor with an externally exposed optical cavity (광 도파관이 외부로 노출된 구조를 가지는 비분산적외선 이산화탄소 센서)

  • Jung, Dong Geon;Lee, Junyeop;Do, Nam Gon;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.456-460
    • /
    • 2021
  • In this study, a Non-Dispersive Infrared (NDIR) Carbon Dioxide (CO2) sensor with an externally exposed optical cavity is proposed for improving sensitivity. NDIR CO2 sensors with high performance must use a lamp-type infrared (IR) source with a strong IR intensity. However, a lamp-type IR source generates high thermal energy that induces thermal noise, interfering with the accuracy of the CO2 concentration measure. To solve this problem, the optical cavity of the NDIR CO2 sensor is exposed to quickly dissipate heat. As a result, the proposed NDIR CO2 sensor has a shorter warm-up time and a higher sensitivity compared to the conventional NDIR CO2 sensor.

Feasibility study on the development of respiration sensor using a chalcogenide optical fiber (Chalcogenide 광섬유를 이용한 호흡측정 센서 개발을 위한 기초 연구)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Oh, Jeong-Eun;Lee, Bong-Soo;Tack, Gye-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.331-336
    • /
    • 2007
  • In this study, we have fabricated an infrared optical fiber based sensor which can monitor the respiration of a patient. The design of a chalcogenide optical fiber based sensor is suitable for insertion into a high electro-magnetic field environment because the sensor consists of low cost and compact mid-infrared components such as an infrared light source, a chalcogenide optical fiber and a thermopile sensor. A fiber-optic respiration sensor is capable of detecting carbon dioxide ($CO_{2}$) in exhalation of a patient using the infrared absorption characteristics of carbon gases. The modulated infrared radiation due to the presence of carbon dioxide is guided to the thermopile sensor via a chalcogenide receiving fiber. It is expected that a mid-infrared fiber-optic respiration sensor which can be developed based on the results of this study would be highly suitable for respiration measurements of a patient during the procedure of an MRI.

NDIR Multi-Gas Measurement System for Air Quality based on Wireless Sensor Network (무선센서네트워크 기반 공기질 측정을 위한 비분산적외선 복합가스측정시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.299-304
    • /
    • 2016
  • As public interest in air quality and environment problem is increasing, many researches are being carried out the gas measurement system. Especially, Non-dispersive infrared (NDIR) measurements using Beer-Lambert gas sensing principle with very high selectivity and long life time are noted for reliable method. It is possible to detect various gases such as carbon dioxide (CO2), carbon monoxide (CO), and nitrogen dioxide (NO2), but many researches are mostly concentrated on CO2 sensor. The multi-gas measuring instrument is high price and unwieldy, therefore it is not suitable for wide area required numerous instrument. So we study the NDIR multi-gas measurement system for air quality based on wireless sensor network, and experiment the realized measurement system.

Fabrication of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 제작)

  • Kim, Sung-Woon;Han, Chun-Jae;Cho, Woo-Sung;Ju, Byeong-Kwon;Cho, Hyun-Seob;Kim, Young-Cho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.223-226
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_2$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF

Improvement of Carbon Dioxide Reduction Efficiency of Titanium Dioxide Photocatalyst Using 1-propanol (1-propanol 첨가에 따른 이산화타이타늄(TiO2) 광 촉매의 비표면적 향상 및 이산화탄소 환원 효율 향상)

  • Ha, Yuntae;Kwon, JinBeom;An, Heekyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.343-347
    • /
    • 2022
  • Recently, the problem of global warming caused by greenhouse gases is getting serious due to the development of industry and the increase in transportation means. Accordingly, the need for a technology to reduce carbon dioxide, which accounts for most of the greenhouse gas, is increasing. Among them, a catalyst for converting carbon dioxide into fuel is being actively studied. Catalysts for reducing carbon dioxide are classified into thermal catalysts and photocatalysts. In particular, the photocatalyst has the advantage that carbon dioxide can be reduced only by irradiating ultraviolet rays at room temperature without high temperature or additional gas. TiO2 is widely used as a photocatalyst because it is non-toxic and has high stability, but has a disadvantage of low carbon dioxide reduction efficiency. To increase the reduction efficiency, 1-propanol was used in the synthesis process. This prevents agglomeration of the catalyst and increases the specific surface area and pores of TiO2, thereby increasing the surface area in contact with carbon dioxide. As a result of measuring the CO2 reduction efficiency, it was confirmed that the efficiency of TiO2 with 1-propanol and TiO2 without 1-propanol was 19% and 12.3%, respectively, and the former showed a 1.5 times improved efficiency.