Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.4.250

Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor  

Do, Nam Gon (Safety System R&D Group, Korea Institute of Industrial Technology)
Lee, Junyeop (Safety System R&D Group, Korea Institute of Industrial Technology)
Jung, Dong Geon (Safety System R&D Group, Korea Institute of Industrial Technology)
Kong, Seong Ho (School of Electrical Engineering, Kyungpook National University)
Jung, Daewoong (Safety System R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of Sensor Science and Technology / v.30, no.4, 2021 , pp. 250-254 More about this Journal
Abstract
A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.
Keywords
Carbon dioxide ($CO_2$); Non-dispersive infrared (NDIR); Fabry-Perot filter; Distributed bragg reflector;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Kocsis, P. Herman, and A. Eke, "The modified BeerLambert law revisited", Phys. Med. Biol., Vol. 51, No. 5, p. N91, 2006.   DOI
2 L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, "Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings", Surf. Coatings Technol., vol. 336, pp. 9-16, 2018.   DOI
3 R. Bogue, "Detecting gases with light: A review of optical gas sensor technologies", Sens. Rev., Vol. 35, No. 2, pp. 133-140, 2015.   DOI
4 N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung, "Si/SiO2 Multilayer-based Fabry-Perot Filter for 4.26 ㎛ Filtering in Carbon Dioxide Detection", J. Sens. Sci. Technol., No. 30, No. 1, pp. 56-60, 2021.   DOI
5 A. Schmidt-Bleker, J. Winter, S. Iseni, M. Dunnbier, K. D. Weltmann, and S. Reuter, "Reactive species output of a plasma jet with a shielding gas device - Combination of FTIR absorption spectroscopy and gas phase modelling", J. Phys. D. Appl. Phys., Vol. 47, No. 14, p. 145201, 2014.   DOI
6 M. Cho, J. H. Seo, D. Zhao, J. Lee, K. Xiong, X. Yin, and Z. Ma, "Amorphous Si/SiO2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes", J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., Vol. 34, No. 4, p. 040601, 2016.
7 M. R. K. Kelly-Gorham, B. M. Devetter, C. S. Brauer, B. D. Cannon, S. D. Burton, M, Bliss, and T. L. Myers, "Complex refractive index measurements for BaF2 and CaF2 via single-angle infrared reflectance spectroscopy", Opt. Mater., Vol. 72, pp. 743-748, 2017.   DOI
8 R. Frodl and T. Tille. "A High-Precision NDIR CO2 gas sensor for automotive applications", IEEE Sens. J., Vol. 6, No. 6, pp. 1697-1705, 2006.   DOI
9 A. Sklorz, A. Schafer, and W. Lang, "Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement", Sensors Actuators, B Chem., Vol. 170, pp. 21-27, 2012.   DOI
10 L. B. Mendes, N. W. M. Ogink, N. Edouard, H. J. C. van Dooren, I. D. F. F. Tinoco, and J. Mosquera, "NDIR gas sensor for spatial monitoring of carbon dioxide concentrations in naturally ventilated livestock buildings", Sens., Vol. 15, No. 5, pp. 11239-11257, 2015.   DOI
11 T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with onchip dielectric mirrors and temperature stabilization", Appl. Phys. B Lasers Opt., Vol. 90, No. 3, pp. 401-405, 2008.   DOI
12 T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction", Sens. Actuator, B-Chem., Vol. 231, pp. 529-538, 2016.   DOI
13 A. F. Perez-Cadenas, C. H. Ros, S. Morales-Torres, M. Perez-Cadenas, P. J. Kooyman, C. Moreno-Castilla, and F. Kapteijn, "Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons", Carbon N. Y., Vol. 56, pp. 324-331, 2013.   DOI
14 B. Liao, Q. Wei, K. Wang, and Y. Liu, "Study on CuOBaTiO3 semiconductor CO2 sensor", Sens. Actuator, Vol. 80, pp. 208-214, 2001.   DOI
15 M. Febrina, E. Satria, M. Djamal, W. Srigutomo, and M. Liess, "Development of a simple CO2 sensor based on the thermal conductivity detection by a thermopile", Meas. J. Int. Meas. Confed., Vol. 133, pp. 139-144, 2019.