• 제목/요약/키워드: carbon dioxide geologic storage

검색결과 8건 처리시간 0.022초

이산화탄소 포집 및 저장에 대한 대중의 인식과 수용도 (Public Awareness and Acceptance of Carbon Dioxide Capture and Storage)

  • 이상일;성주식;황진환
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.469-481
    • /
    • 2012
  • CCS(Carbon Dioxide Capture and Storage) is considered as the most effective counterplan in the mitigation of climate change. Even though the risk of leakage of $CO_2$ stored in the geologic formation is very low, the public is expected to disagree with the initiation of a CCS project without proper management plans ensuring the safety. In this study, recognition of laypeople were surveyed about CCS, climate change, characteristics of carbon dioxide, storage concepts, ground pressure, the impact of carbon dioxide, and carbon dioxide for leakage. Thereafter the factors that could affect to recognition of CCS were analyzed by regression analysis. A survey was carried out to find out the public understanding and awareness about climate change and CCS. It is the purpose of this study to propose appropriate risk management strategies based on the findings from the survey.

이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향 (Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2)

  • 한아름;김태희;권이균;구민호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권3호
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향 (Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG)

  • 채광석;이상필;윤성욱;마츠오카 토시후미
    • 터널과지하공간
    • /
    • 제20권5호
    • /
    • pp.309-317
    • /
    • 2010
  • CCS는 "이산화탄소의 포집 및 저장 기술"의 약어로서, 화석연료를 사용하는 화력발전소, 제철소 등에서 대규모로 배출하는 이산화탄소를 저감하기 위한 방법이다. CCS는 화석연료의 연소에서 발생되는 가스를 포집하여, 압축, 수송, 주입의 프로세스를 거처서 깊은 지하에 영구적으로 저장한다. CCS를 기존 화력발전소에 적용시에는 CCS 설비가 없는 발전소에 비해 약 80~90%의 이산화탄소를 줄일 수 있다. IPCC의 보고서에 의하면, CCS는 2010년까지 이산화탄소 총 감축량의 10~55%를 감당할 수 있는 경제적 잠재력이 있다고 보고되고 있다. 본 고에서는 CCS 기술의 해외 적용 사례 및 관련 핵심 기술 동향에 대해 간략하게 소개하고자 한다.

이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안 (Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea)

  • 최태섭;이정석;이규태;박영규;황진환;강성길
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제12권4호
    • /
    • pp.307-319
    • /
    • 2009
  • 이산화탄소를 포함하는 온실가스의 증가로 인한 기후변화 영향을 저감하기 위해 최근 이산화탄소의 포집 및 저장(CCS)과 관련된 많은 연구들이 이루어지고 있다. 포집된 이산화탄소의 저장은 저장용량이 큰 육상/해상의 유 가스전, 대수층, 석탄층과 같은 지질구조를 이용한다. 이산화탄소의 포집 및 저장과정에서 예상되는 가장 중요한 문제는 이산화탄소의 환경 중 유출에 의해 발생할 수 있다. 사업과정 또는 이후의 이산화탄소의 유출은 잠재적으로 환경 변화 및 서식 생물에 심각한 위해를 미칠 수 있는 것으로 우려된다. 저장된 이산화탄소의 유출에 의한 환경 위해를 최소화하고 과학적으로 관리하기 위해서는 환경위해성평가 결과를 바탕으로 위해도 저감 및 관리가 이루어져야 할 것이다. 위해성평가는 기본적으로 효율적인 위해도 관리를 위한 정책 결정 도구로 활용되며, 예상되는 위해요인과 인간 및 생태계에 미치는 영향과의 관계에 대한 신뢰성 있는 자료를 바탕으로 노출평가와 영향평가를 수행한 후 위해도를 산정하는 과정이다. 최근 국제해사기구(IMO)는 해저 지중저장 사업을 위한 위해성평가 체계에 대한 일반 지침서를 제시하였고, 모든 해저 지중저장 사업의 수행 주체는 이 지침서를 기본으로 사업 수행 전 과정에 대한 위해성평가관리 체계를 마련하도록 요구하고 있다. 이 지침서는 이산화탄소의 해저 지중저장에 대한 환경위해성평가는 저장 지역에 대한 특성파악, 유출시나리오에 기반한 노출평가, 누출된 이산화탄소에 의한 생물에 대한 직접적인 영향 및 환경 변화에 의한 간접적인 영향이 고려된 영향평가 등을 포함한다. 국내에서 시도되는 이산화탄소의 포집 및 해저 지중저장사업 또한 IMO의 지침서를 기반으로 하되 사업과 환경 특성에 적합한 위해성평가관리 시스템을 구축할 필요가 있다. 국내의 이산화탄소 해양 지중저장사업에 대한 위해성평가관리 체계 마련을 위해서는, 후보지역의 환경 특성에 대한 연구를 바탕으로 해양환경에서 이산화탄소의 물리화학적 거동에 대한 이해, 육상 및 해양환경의 배경 조건 및 특성 파악, 포집 후 수송, 지중저장 지질구조에 적합한 개연성 있는 유출시나리오에 기반을 둔 노출평가와 국내 생물종을 이용한 생태영향평가 자료의 생산과 DB화, 그리고 유출 감시 및 환경 모니터링 기법 개발 등이 반드시 이루어져야 한다.

  • PDF

이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발 동향 (Geochemical Concept and Technical Development of Geological $CO_2$ Sequestration for Reduction of $CO_2$)

  • 채기탁;윤성택;최병영;김강주
    • 자원환경지질
    • /
    • 제38권1호
    • /
    • pp.1-22
    • /
    • 2005
  • 이산화탄소($CO_2$)는 기후협약에 관한 교토의정서에서 적시한 온실가스 중에서 가장 중요한 물질이다. 이에 세계 각 국은 화석에너지 사용의 효율성 증가, 저탄소 함량의 에너지원, 대체에너지원 개발 등 이산화탄소 배출량을 조절하고 줄이기 위한 기술 개발에 상당한 노력을 기울이고 있다. 그러나 교토의정서에서 제시한 배출량을 만족시키기 위해서 는 이산화탄소 처분 기술의 개발과 적용이 필수적으로 요구된다. 현재까지 개발된 이산화탄소 처분 기술 중에는 심부 대수층 처분, 심부 석탄층 처분, 유전 및 가스전 처분, 탄산염광물화 처분 등의 지중(지질) 처분 기술이 그 안정성 및 환경적 친화성으로 말미암아 가장 적극적으로 고려되고 있다. 본 논문에서는 이산화탄소 지중 처분 기술, 특히 대수 층 처분 및 탄산염광물화 처분 기술의 지구화학적 개념과 기술개발 동향에 대하여 알아보고 또한 각 지중 처분 기술 의 장점과 단점에 대하여 검토하고자 한다.

국내 해양 CCS 사업의 HSE 관리 프레임워크 구축 전략 (Strategy for Development of HSE Management Framework for Offshore CCS Project in Korea)

  • 노현정;강관구;강성길;이종갑
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제20권1호
    • /
    • pp.26-36
    • /
    • 2017
  • 지구온난화를 방지하기 위해 대량의 $CO_2$를 감축 시킬 수 있는 해양 CCS(Carbon dioxide Capture and Storage) 실증 및 상용화를 국내에서 준비 중이다. 해양 CCS 사업은 해양내 심부 퇴적층을 대상으로 대규모 $CO_2$를 수송, 주입, 저장하는 기술로써, 누출 등의 사고 발생 시 인명, 환경, 재산 등에 큰 피해를 야기할 잠재적 가능성을 가지고 있다. 따라서 해양 CCS 사업 안전성을 확보하기 위해서는 생애주기에 걸쳐서 유 가스 생산 해양플랜트에 준하는 엄격한 HSE(Health, Safety and Environment) 관리 방안이 요구된다. 하지만 국내에는 CCS 사업에 적용 가능한 HSE 법 또는 규정이 없을 뿐만 아니라 관련 연구도 미비한 상황이다. 이에 본 연구에서는 국외 해양플랜트 관련 HSE 관리 방법론, 해양 CCS HSE 관리 가이드라인 및 국외 사례를 분석하고, 이를 통하여 국내에서 해양 CCS를 추진시 HSE 관리 프레임워크 구축에 필요한 요구사항을 도출하였다. 이를 위해 본 연구에서는 먼저 범용적으로 활용되는 위험 관리방법론인 ISO 31000에 대한 분석을 수행하였다. 또한 해양플랜트 HSE 관리체계를 체계적으로 구축 운영 중인 노르웨이와 영국의 해양 CCS HSE 관리가이드라인 및 적용사례를 각각 분석하였다. 이를토대로 국내에서 해양 CCS 사업 추진시 HSE 관리 프레임워크 구축을 위해 우선적으로 수행해야할 사항으로 HSE Philosophy의 작성의 필요성을 피력하였고 생애주기 단계에 따른 HSE 관리 프로세스를 제안하였다. 본 논문에서 제안한 HSE 관리 프레임워크를 통해 국내 해양 CCS 실증 사업 추진시 기획 설계 단계부터 HSE 관리를 한다면 보다 안전하고 체계적인 사업을 이행할 수 있을 것으로 기대된다.

고갈 유전 저류층에서 노달분석을 이용한 CO2 주입성 분석 연구 (A Study on CO2 injectivity with Nodal Analysis in Depleted Oil Reservoirs)

  • 안유빈;김재윤;권순일
    • 한국가스학회지
    • /
    • 제28권2호
    • /
    • pp.66-75
    • /
    • 2024
  • 본 연구에서는 말레이시아 고갈 유전에 대해 노달분석을 통한 CO2 주입성 분석 모델을 개발하였다. 유정시험이 수행된 평가정 현장 자료를 토대로 기본 모델을 구축하고 주입 압력, 주입관 크기, 저류층 압력, 저류층 투과도, 그리고 두께에 대하여 민감도 분석을 수행하였다. A 유전 평가정 산출시험 보고서를 토대로 생산 노달분석을 수행하여 투과도를 10md로 산출하였다. A 평가정 기본 입력자료를 활용하여 주입정 모델을 설정한 후, 기본 모델에 대하여 노달 분석 결과 운영 공저 압력 3000.74psia에서 CO2 주입량이 13.29MMscfd로 산출되었다. 민감도 분석 결과, 주입 압력, 저류층 두께, 투과도가 높아지거나 저류층 압력이 낮아지면 주입량이 대략 선형적으로 증가하였다. 또한, 단위 인치 당 주입량 분석을 통해 주입관 크기 2.548inch일 때 가장 효율적으로 주입할 수 있음을 도출할 수 있었다. 지층 파쇄압력을 알고 있다면 노달분석을 수행하여 운영 공저 압력과의 비교를 통해 주입 가능한 최대 저류층 압력과 주입 압력을 예측할 수 있을 것으로 생각된다.

포항분지 덮개암에 대한 지화학적 반응 실험 및 모델링 연구 (Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin)

  • 김선옥;왕수균;이민희
    • 자원환경지질
    • /
    • 제49권5호
    • /
    • pp.371-380
    • /
    • 2016
  • 이 연구는 이산화탄소 지중저장 후보지의 하나로 알려진 포항분지 덮개암의 광물학적 및 암석학적 특성을 파악하고, 실험과 지화학 모델링을 이용하여 이산화탄소 주입으로 인해 발생할 수 있는 덮개암의 지화학적 및 광물학적 영향을 규명하였다. 실험은 이산화탄소 지중저장 조건에 해당하는 $50^{\circ}C$와 100 bar의 고온고압조건에서 덮개암 6 g과 염수 60 ml를 고압셀에 넣어 15일 동안 반응시켰다. 반응 후 덮개암과 염수 시료의 지화학적 및 광물학적 변화를 확인하기 위해 XRD, XRF, ICP-OES 등의 분석을 통해 정량적으로 규명하였다. 또한 덮개암의 광물학적 연구 결과와 염수의 물리화학적 변수 자료들을 이용하여 지화학 모델링(The Geochemist's Workbench 11.0.4)을 수행하였다. 덮개암의 광물학적 분석 결과, 석영, 사장석, K-장석으로 주로 구성되어 있고, 소량의 운모, 황철석, 능철석, 방해석, 카올리나이트와 몬모릴로나이트로 이루어져 있었다. 덮개암과의 반응 후 염수의 이온 농도 분석 결과, 사장석, K-장석과 몬모릴로나이트 또는 운모와 같이 Mg를 포함하는 광물의 용해 반응에 의하여 $Ca^{2+}$, $Na^+$, $K^+$, $Mg^{2+}$ 이온들의 농도가 증가하였다. 100 년 동안 모델링한 결과, 사장석와 K-장석은 용해되고, 카올리나이트, 도소나이트, 베이덜라이트는 재결정화되어, 암석의 공극률 변화에는 큰 영향을 주지 않을 것으로 판단되었다. 실험 및 모델링 결과는 이산화탄소를 지중저장하는 동안 덮개암과 초임계 이산화탄소와의 상호반응에 의해 염수의 pH, 광물의 용해도과 안정성 등에 중요한 영향을 미칠 수 있음을 보여주었다.