• Title/Summary/Keyword: carbon deposition

Search Result 1,223, Processing Time 0.037 seconds

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

Effect of the surface modification using MWCNTs with different L/D by two different methods of deposition on the IFSS of single carbon fiber-epoxy resin composite

  • Herrera-Sosa, Minerva L.;Valadez-Gonzalez, Alex;Vazquez-Torres, Humberto;Mani-Gonzalez, Pierre G.;Herrera-Franco, Pedro J.
    • Carbon letters
    • /
    • v.24
    • /
    • pp.18-27
    • /
    • 2017
  • Multiwall carbon nanotubes (MWCNT) with two different (L/D) aspect ratios ($7{\pm}2{\mu}m/140{\pm}30nm$ and $0.5-2{\mu}m/8-15nm$) were surface treated using nitric acid ($HNO_3$) and polyethyleneimine (PEI) prior to their deposition on carbon fibers (CF). Before the hierarchical reinforcement with CF-MWCNT, the CFs were treated with 3-glycidoxypropyltrime-thoxysilane, a coupling agent (Z6040) and with poly(amidoamine) (PAMAM) a dendrimer containing an ethylenediamine core and amine surface groups. The MWCNT were deposited on the CF using two methods, by electrostatic attraction and by chemical reactions. The changes in the CF surface morphology after the MWCNT deposition were analyzed using SEM, which revealed a higher density and uniform coverage for the PAMAM-treated CF and the short MWCNTs. The interfacial adhesion of the composite materials was evaluated using the single fiber fragmentation technique. The results indicated an improvement in the interfacial shear strength with the addition of the short-MWCNTs treated with acid solutions and grafted onto the surface of the CF fiber using electrostatic attraction.

Selective Growth of Freestanding Carbon Nanotubes Using Plasma-Enhanced Chemical Vapor Deposition (플라즈마 기상 화학 증착법을 이용한 탄소나노튜브의 선택적 수직성장 기술)

  • Bang, Yun-Young;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.113-120
    • /
    • 2007
  • Chemical vapor deposition (CVD) is one of the various synthesis methods that have been employed for carbon nanotube (CNT) growth. In particular, Ren et al reported that large areas of vertically aligned multi-wall carbon nanotubes could be grown using a direct current (dc) PECVD system. The synthesis of CNT requires a metal catalyst layer, etchant gas, and a carbon source. In this work, the substrates consists of Si wafers with Ni-deposited film. Ammonia $NH_3$) and acetylene ($C_2H_2$) were used as the etchant gases and carbon source, respectively. Pretreated conditions had an influence on vertical growth and density of CNTs. And patterned growth of CNTs could be achieved by lithographical defining the Ni catalyst prior to growth. The length of single CNT was increased as niclel dot size increased, but the growth rate was reduced when nickel dot size was more than 200 nm due to the synthesis of several CNTs on single Ni dot. The morphology of the carbon nanotubes by TEM showed that vertical CNTs were multi-wall and tip-type growth mode structure in which a Ni cap was at the end of the CNT.

The development of complex electrode for fuel cell using CNT (CNT를 이용한 PEMFC 연료전지용 복합전극 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.135.2-135.2
    • /
    • 2010
  • Carbon nanotube(CNT) has been spotlighted as a promising candidate for catalyst support material for PEMFC (proton exchange membrane fuel cell). The considerable properties of CNT include high surface area, outstanding thermal, electrical conductivity and mechanical stability. In this study, to fully utilize the properties of CNTs, we prepared directly oriented CNT on carbon paper as a catalyst support in the cathode electrode. The CNT layer was prepared by a chemical vapor deposition(CVD) process. And the Pt particles were deposited on the CNT oriented carbon paper by impregnation and eletro-deposition method. The potential advantages of directly oriented CNT on carbon paper can include improved thermal and charge transfer through direct contact between the electrolyte and the electrode and enhanced exposure of Pt catalyst sites during the reaction.

  • PDF

Electrospray Deposition and Characterization of Single-Walled Carbon Nanotube Thin Films

  • Sundharam, Sridharan;Choi, Kyung-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • Single-walled carbon nanotubes are one among the most promising carbonaceous materials to be used as the electrodes in the devices like micro batteries, supercapacitors, etc. In this study, single-walled carbon nanotube thin films have been fabricated through electrospray deposition technique which is one of the attractive direct printing methods in the field of printed electronics. Single-walled carbon nanotube ink (water dispersed, 3wt %) has been used to fabricate thin films through electrospray deposition technique. The as-deposited SWCNT thin films have been characterized using the appropriate characterization techniques and the results are presented.

  • PDF

Deposition of Diamond Like Carbon Thin Films by PECVD (PECVD법에 의한 DLC 박막의 증착)

  • 김상호;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

Adsorption of nitrate onto nitrogen-doped activated carbon fibers prepared by chemical vapor deposition

  • Yoo, Pyunghwa;Amano, Yoshimasa;Machida, Motoi
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2468-2473
    • /
    • 2018
  • Nitrogen-doped activated carbon fibers (ACFs) were prepared by chemical vapor deposition using melamine powder and acetonitrile for introducing quaternary nitrogen on the commercial ACFs, subsequently heated at $950^{\circ}C$ and activated by steam. Adsorption experiments of nitrate in aqueous solution were also conducted to evaluate adsorption capacity of the prepared ACFs using ion chromatography. The amount of introduced nitrogen content and nitrogen species on activated carbon fibers was examined by CHN elemental analyzer and X-ray photoelectron spectroscopy, respectively. As a result, adsorption capacity of quaternary nitrogen-doped ACF (ST-ML-AN-ST) was 0.75 mmol/g, indicating ca. two-times higher than that of untreated ACF (0.38 mmol/g). According to the adsorption data, the Langmuir isotherm model was the best fit. The prepared samples were also regenerated using hydrochloric acid. After regeneration, the adsorption capacity of the nitrogen-doped ACF (ST-ML-AN-ST) showed ca. 80% on average, implying that a portion of nitrates was adsorbed on the prepared ACFs irreversibly.

Fabrication of Micro Carbon Structures and Patterns with Laser-assisted Chemical Vapor Deposition (레이저 국소증착을 통한 미세 탄소구조물 및 패턴 제조)

  • 정성호;김진범;이선규;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.914-917
    • /
    • 2002
  • Fabrication of micro carbon structures and patterns using laser-assisted chemical vapor deposition is studied. Argon ion laser and ethylene were used to grow micro carbon rod through pyrolytic decomposition of the reaction gas. The influence of reaction gas pressure and incident laser power on the diameter and growth rate of the micro carbon rod was experimentally investigated. The diameter of micro carbon rods increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below 1W. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 28 ${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated.

  • PDF

Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers

  • Sharon, Maheshwar;Sharon, Madhuri;Kalita, Golap;Mukherjee, Bholanath
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • Synthesis of carbon fibers from cotton fiber by pyrolysis process has been described. Synthesis parameters are optimized using Taguchi optimization technique. Synthesized carbon fibers are used for studying hydrogen adsorption capacity using Seivert's apparatus. Transmission electron microscopy analysis and X-ray diffraction of carbon fiber from cotton suggested it to be very transparent type material possessing graphitic nature. Carbon synthesized from cotton fibers under the conditions predicted by Taguchi optimization methodology (no treatment of cotton fiber prior to pyrolysis, temperature of pyrolysis $800^{\circ}C$, Argon as carrier gas and paralyzing time for 2 h) exhibited 7.32 wt% hydrogen adsorption capacity.

Laser Ablated Carbon Thin Film from Carbon Nanotubes and Their Property Studies

  • Sharon, Maheshwar;Rusop, M.;Soga, T.;Afre, Rakesh A.
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • A carbon nanotube (CNT) of diameter ~20 nm has been synthesized by spray pyrolysis of turpentine oil using Ni/Fe catalyst. Pellet of CNTs has been used as a target to produce semiconducting carbon thin film of band gap 1.4 eV. Presence of oxygen pressure in the pulse laser deposition (PLD) chamber helped to control the $sp^3/sp^2$ ratio to achieve the desired band gap. Results are discussed with the help of Raman spectra, SEM TEM micrographs and optical measurements suggest that semiconducting carbon thin film deposited by PLD technique has retained its nanotubes structure except that its diameter has increased from 20 nm to 150 nm.