• Title/Summary/Keyword: carbon density

Search Result 1,796, Processing Time 0.036 seconds

Electrocatalytic Reduction of Carbon Dioxide on Sn-Pb Alloy Electrodes

  • Choi, Song Yi;Jeong, Soon Kwan;Park, Ki Tae
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.231-236
    • /
    • 2016
  • Electrocatalytic reduction can produce useful chemicals and fuels such as carbon monoxide, methane, formate, aldehydes, and alcohols using carbon dioxide, the green house gas, as a reactant through the supply of electrical energy. In this study, tin-lead (Sn-Pb) alloy electrodes are fabricated by electrodeposition on a carbon paper with different alloy composition and used as cathode for electrocatalytic reduction of carbon dioxide into formate in an aqueous system. The prepared electrodes are measured by Faradaic efficiency and partial current density for formate production. Electrocatalytic reduction experiments are carried out at -1.8 V (vs. Ag/AgCl) using H-type cell under ambient temperature and pressure and the gas and liquid products are analyzed by gas chromatograph and liquid chromatograph, respectively. As results, the Sn-Pb electrodes show higher Faradaic efficiency and partial current density than the single metal electrode. The Sn-Pb alloy electrode which have Sn:Pb molar ratio=2:1, shows the highest Faradaic efficiency of 88.7%.

The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives (첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선)

  • 손종석;정구훈;주혁종
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.845-853
    • /
    • 2000
  • The optimum cure cycle and carbonization condition were selected by the DSC and TGA analysis and green bodies were prepared by the method of hot press molding and then carbonized up to 140$0^{\circ}C$. Additives such as graphite powder, carbon black, milled carbon fiber and carbon fiber mat, which were considered to be effective in improving the interlaminar shear strength, were also added to check their effects on the density and porosity of products. Then, their relations with mechanical properties such as ILSS and flexural strength were investigated. The composites added 9 vol% of graphite powder showed the greatest values of ILSS and flexural strength. Otherwise, in case of adding carbon black, the composites showed the slight improvement of ILSS at its contents of 3 vol% but the flexural strength was decreased. When milled carbon fiber and carbon fiber mat were added, the lack of resin and the heat shrinkage during the carbonization caused the delamination, resulting in decreasing the density, ILSS and flexural strength.

  • PDF

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

Measurement of Impurities and Physical Properties at Semiconductive Shield of a Power Cable (전력케이블의 반도전 재료에서 불순물 및 물성 측정)

  • Lee Kyoung-Yong;Yang Jong-Seok;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.601-605
    • /
    • 2004
  • In this paper, we investigated ionic impurities and physical properties by change of carbon black content, which is asemiconductive material for underground power transmission. Specimens were made into sheet form with three existing resins and nine specimens for measurement. The ionic impurities of the specimens were measured using anICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer), and the density of specimens was measured by a density meter. Specific heat (Cp) was then measured using aDSC (Differential Scanning Calorimetry). The ranges of measurement temperature were from 0[$^{\circ}C$] to 200[$^{\circ}C$], and heating temperature was 4[$^{\circ}C$/min]. Ionic impurities were measured to be high according to increases in the content of carbon black from this experimental result and density was also increased according to these properties. In particular, the impurity content values of A1 and A2, and existing resins, were measured at more than 4000[ppm]. Specific heat from the DSC results was lowered according to augmentation in the content of carbon black. The ionic impurities of carbon black containing Fe, Co, Mn, Al and Zn are forms of rapidly passed kinetic energy that increase the number of times breaking occurs during unit time with the near particles according to an increase in the vibration of particles by the applied heat energy.

A Study on Impurities Measurement and Physical Properties of Semiconductive Shield at Power Cable (전력케이블에서 반도전 재료층의 불순물 측정 및 물성에 관한 연구)

  • 이경용;양종석;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.455-458
    • /
    • 2004
  • In this paper, we investigated impurities content and physical properties showing by changing the content of carbon black that is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens was measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer), and density of specimens were measured by density meter And then specific heat (Cp) was measured by DSC (Differential Scanning Calorimetry). A ranges of measurement temperature were from $0^{\circ}[C]$ to $200^{\circ}[C]$, and heating temperature was $4^{\circ}[C/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result, also density was increased according to these properties. Especially impurities content values of the Al and A2 of existing resins were measured more than 4000[ppm]. Specific heat from the DSC results was decreased according to increasing the content of carbon black. Because ionic impurities of carbon black having Fe, Co, Mn, Al and Zn are rapidly passed kinetic energy increasing the number of times breaking during the unit time with the near particles according to increasing vibration of particles by the applied heat energy.

Fabrication and Characteristics of Ni Doped Carbon Thin Films Prepared by Unbalanced Magnetron Sputtering for the Application of Biomaterials (생체 적합 소재 응용을 위한 비대칭 마그네트론 스퍼터링으로 제작된 Ni 도핑된 탄소 박막의 제조 및 특성)

  • Kim, Kwang-Taek;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.40-43
    • /
    • 2018
  • Various Ni-doped carbon (C : Ni) thin films were fabricated using different Ni target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the structural, physical, surface, and electrical properties of C : Ni films were investigated. The UBM C : Ni thin films exhibited uniformly smooth surfaces. The rms surface roughness and friction coefficient values of the C : Ni films decreased with the increase in target power density. The physical properties of the films such as hardness and elastic moduli increased while their electrical properties such as resistivity decreased with the increase in the target power density. These results show that an increase of the power density leads to an increase in the proportion of Ni and nanocrystallization of the amorphous carbon film; this contributes to the changes observed in the physical and electrical characteristics.

Studies on Improved Carbon Cathode Performance in High Rate $Li/SOCl_2$ Cell (고율 방전용 $Li/SOCl_2$ 전지의 카본 양극 개선에 관한 연구)

  • 최정자;조성백;박희숙
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.225-232
    • /
    • 1997
  • The performance characteristics of high rate discharge LiSOCl2 cells are highly affected by carbon cathode. During the cell discharge, SOCl2 reduction takes place at the porous carbon cathode, resulting in the precipitation of reaction products, mainly LiCl, within the pores of the substrate. This leads to eventual passivation of the cathode surface and resulting cell failure. To improve the cathode performance, we ex-amined discharge reactions of cathodes (half-cell, 50 mA/$\textrm{cm}^2$ constant current) with various surface density and thickness. The carbon cathode with the optimum capacity for our application is surface density 0.04 g/$\textrm{cm}^2$ and thickness 1.4mm carbon. The carbon cathode with surface density 0.04g/$\textrm{cm}^2$ and thickness 1.4 mm exhibits decreased polarization, increased discharge duration time and capacity (Ah/$\textrm{cm}^2$) as compared with that with surface density 0.04g/$\textrm{cm}^2$ and thickness 0.8mm. The porosities analyses on the two carbon cathodes show that total pore volume of the carbon cathode with thickness 1.4 mm is larger than that with thickness 0.8mm. The increased volume of mesopores (0.05$\mu$m~0.5$\mu$m) and macropores(>0.5$\mu$m) is ob-served with the carbon cathode with thickness 1.4mm as compared with that with thickness 0.8mm, which can be related with the observed capacity increase. We observed LiCl crystals, cubic crystallites and fused, plate-like aggregates, and some elemental S as discharge products by EDS and XRD.

  • PDF

Effect of Evaporative Pattern on the Surface Layer Structures of Carbon Steel and Gray Iron Castings. (소실모형이 탄소강 및 회주철 주물의 표면층 조직에 미치는 영향)

  • Kim, Ji-Youn;Cho, Nam-Don
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.305-316
    • /
    • 1992
  • Steel and iron castings made with expandable polystylene (referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The effects of practical factors on carbon pick-up were investigated on the specimens, by taking successive layers of swarf and analysis, whereas the lustrous carbon is determined by using combustion analysis. The quality of the castings, with particular reference to carbon pick-up in low carbon steel and lustrous carbon on gray iron, is further influenced to a significant extent by such practical factors as reduced pressure, the pouring temperature, the density of EPS pattern, the additive in coating and in pattern and the casting thickness. The rate at which carbon pick-up and lustrous carbon deposites are formed can be reduced by reducing the density of the pattern and also reducing pressure, especially by adding $Na_2CO_3$ in coating and in pattern to promote $CO_2$ evolution. The upper parts of castings obtained using EPS patterns are slightly higher in carbon pick-up and in lustrous carbon than other parts.

  • PDF

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration (NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.814-819
    • /
    • 2010
  • Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.