• Title/Summary/Keyword: carbon curing

Search Result 288, Processing Time 0.024 seconds

The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete

  • Kim, Seonhyeok;Amr, Issam T.;Fadhel, Bandar A.;Bamagain, Rami A.;Hunaidy, Ali S.;Park, Solmoi;Seo, Joonho;Lee, H.K.
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.367-374
    • /
    • 2021
  • The present study investigated the effect of the combined carbonation and steam curing on the physicochemical properties and CO2 uptake of the Portland cement concrete. Four different curing regimes were adopted during the initial 10 h of curing to evaluate the potential of carbonation curing as an alternative to conventional steam curing in the precast concrete industry from environmental and practical viewpoints. Four combinations of carbonation and steam curing conditions were applied as curing regimes to the samples at an early age. The test results indicated that the samples treated with the combined carbonation and steam curing exhibited higher early strength development compared to the other samples, signifying that carbonation curing can reduce the production time of precast concrete. Furthermore, the CO2 uptake capacity of the samples was calculated and found to be as high as 18% with respect to the mass of the paste samples. Hence, the simultaneous utilization of steam and CO2 for the fabrication of precast concrete members has the potential to make precast concrete greener and more cost-effective.

Effects of pre-curing periods on pore structures of ordinary Portland cement pastes with calcium silicate cement powder

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cement industry is a major source of carbon dioxide emissions. Reduction in emissions in this sector is an important issue. Calcium silicate cement is a type of alternative to ordinary Portland cements which contributes to the reduction in carbon dioxide emissions. However, because the type of cement is a non-hydraulic material, there are limitations to its application in the field. The effects of pre-curing periods on the physical characteristics of ordinary Portland cement pastes with calcium silicate cement in the present study were investigated. The Independent variable is the pre-curing period. The pre-curing period varied from 0 to 5 hrs, considering the hydration characteristics of ordinary Portland cement. The carbonation curing of the ordinary Portland cement pastes with the calcium silicate cement after pre-curing was conducted. The concentration of gaseous CO2 was fixed at 20 %. The test results showed that the pre-curing period led to the pore structural change of the pastes, which in turn could affect the further reaction under the long-term curing condition.

A study on the drawing device and curing mold in CFRP rectangular pipe pultrusion process using a closed impregnation method (밀폐형 함침법을 이용한 CFRP 사각 파이프 인발성형에서 인발장치 및 경화금형에 관한 연구)

  • Kang, Byung-Soo;Yoo, Hyeong-Min
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.60-65
    • /
    • 2022
  • In the pultrusion process for the CFRP (Carbon fiber reinforced plastic) rectangular pipe, the drawing device is eseential which can continuously produces products and draws the carbon fiber tow. In addition, since the degree of cure changes depending on the temperature and the temperature ditribution of the curing mold changes depending on the pultrusion speed, the temperature distribution of the curing mold under certain conditions must be studied before processing. In this study, in the pultrusion process using a closed impregnation method, which has several advantages compared to the general pultrusion process using a open bath impregnation method, the drawing force required to pull the carbon fiber tows and the temperature distribution of the curing mold was analyzed to design the drawing device and the curing mold efficiently.

Evaluation of Mechanical Properties and Microstructure of Calcium Silicate Cement-Based Paste according to Carbonation Curing Conditions (Calcium silicate cement-based paste의 탄산화 양생 조건에 따른 역학적 특성 및 미세구조 평가)

  • Choi, Chang-Keun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.93-94
    • /
    • 2023
  • This study evaluated the mechanical properties and microstructure of calcium silicate cement based paste according to carbonation curing conditions. As a result, both compressive strength and carbonation depth increased with the carbonation curing period.

  • PDF

Nondestructive Interfacial Evaluation and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소 섬유 강화 에폭시아크릴레이트 복합재료의 자외선과 열경화에 따른 경화 모니터링 및 비파괴적 계면 평가)

  • 박종만;공진우;김대식;이재락
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2003
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermo setting composite with different curing processes were investigated using electro-micromechanical test. After curing, the residual stress was monitored by measurement of electrical resistance and then compared to various curing processes. In thermal curing case, matrix tensile strength, modulus and interfacial shear strength were higher than those of ultraviolet curing case. The shrinkage measured during thermal curing occurred significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient. The apparent modulus measured in the thermal curing indicated that mechanical and interfacial properties were highly improved. The reaching time to the same stress of thermal curing was faster than that of UV curing case.

Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

A study on Fabrication of Harden Carbon for Electrical Application (전기재료장 경질탄소 제조에 관한 연구)

  • 지명학;임대영;김종옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.198-201
    • /
    • 1995
  • Carbons are the materials which are known to be usable at highest temperature in existing materials and are being increased their mechanical Properties to 2000$^{\circ}C$. They have many advantageous characteristics such as electrical and thereat conductivity. But, inspire of their properties, this materials have covalant bonding that strong1y link their atoms. the covalant bondings are too strong to occur atomic diffusions or shirinkages during the sintering. because of this sintering mechanism, carbon materials must be produced by using some binders. To obtain a good carton material, it is important that the function of binders. And to obtain a good binder, it reqired the additive which can improve the properties of the binder, so called curing agent. In this study, we make a curing agent that can improve the properties of binders to evaluate the yield of carbon from binders and to shirink the substrate. and compared the carbon materials treated with the binder containing the curing agent to that treated with common binder.

  • PDF

High Pressure Curing of Phenol Resin for High Quality Coating of Glassy Carbon (고품질 유리질 카본 코팅을 위한 페놀 수지의 고압 경화)

  • Hong, Seok-Gi;Cho, Kwang-Youn;Kwon, Oh-Hyeon;Cho, Yong-Soo;Jang, Seung-Jo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • Successful coating of high quality glassy carbon is introduced by applying high pressure during the curing process of dip-coated phenol resin on graphite. The dependence of the applied pressure on the quality of the glassy carbon layer has not been reported so far. Pressure was changed from 0 to 400 psi during curing at $200^{\circ}C$. After carbonized at $1100^{\circ}C$ in inert atmosphere for the 400 psicured sample, as a promising result, a thick (~ 3 mm) and smooth glassy carbon layer could be obtained without any breakage, and the yield of carbonization was remarkably increased. It is believed that the cross-linking of resins results in decreasing volatile contents and, thus, increasing the yield of the glassy carbon. The origin of the improvement is discussed on the basis of several analytical results including FE-SEM, FT-IT and Raman spectrum.