• 제목/요약/키워드: carbon ceramic

검색결과 763건 처리시간 0.022초

Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites

  • Oh, Won-Chun;Na, Yu-Ri
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon/$TiO_2$ composite photocatalysts were thermally synthesized with different mixing ratios of anatase to phenol resin through an ethanol solvent dissolving method. The XRD patterns revealed that only anatase phase can be identified for Carbon/$TiO_2$ composites. The diffraction peaks of carbon were not observed, however, due to the low carbon content on the $TiO_2$ surfaces and the low crystallinity of amorphous carbon. The results of chemical elemental analyses of the Carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for carbon and Ti metal than that of any other elements. The BET surface area increases to the maximum value of $488\;m^2/g$ with the area depending on the amount of phenol resin. From the SEM images, small $TiO_2$ particles were homogeneously distributed to a composite cluster with the porosity of phenol resin-based carbon. From the photocatalytic results, the MB degradation should be attributed to the three kinds of synergetic effects, such as photocatalysis, adsorptivity, and electron transfer by light absorption between supporter $TiO_2$ and carbon.

활성탄소섬유-세라믹복합체의 제조 및 물성 (Preparation of Activated Carbon Fiber-Ceramic Composites and Its Physical Properties)

  • 이재춘;박민진;김병균;신경숙;이덕용
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.56-62
    • /
    • 1997
  • 탄화된 PAN 섬유, 페놀수지, 세라믹 결합체를 혼합하여 탄소섬유-세라믹복합체를 제조한 후 활성화시켜 PAN 섬유의 탄화온도에 따른 활성탄소섬유-세라믹복합체의 비표명적과 굽힘 강도변화를 연구하였다. 안정화 PAN 섬유를 80$0^{\circ}C$와 100$0^{\circ}C$에서 각각 탄화시켜 얻은 두 종류의 탄소섬유를 복합체 제작시편의 원료로 사용하였다. 탄소섬유-세라믹복합체를 10~90분간 CO2로 85$0^{\circ}C$에서 활성화시켜 얻은 두 종류의 활성복합체에 대한 물성 측정결과, 80$0^{\circ}C$로 PAN 섬유를 탄화시켜 만든 활성복합체의 burn-off이 37%에서 76%로 증가될 때 비표면적은 493m2/g에서 1090m2/g으로 증가하였으며, 굽힘강도는 4.5 MPa에서 1.4MPa로 감소하였다. 이 값들은 안정화 PAN 섬유의 탄화온도를 100$0^{\circ}C$로하여 활성복합체 시편이 나타내는 값보다 약 2배 정도 큰 값이었다. 비표면적, 굽힘강도 측정결과와 미세조직 관찰결과, PAN 섬유의 탄화온도가 활성복합체의 비표면적과 굽힘강도에 미치는 영향은 활성화시 탄소섬유와 페놀수지탄화체 또는 세라믹 필름간에 발생되는 결합력과 상대적인 수축율에 의해 결정되는 활성복합체의 구조특성에 기인된 것으로 해석하였다.

  • PDF

저가 탄소섬유를 이용한 악취제거 기술 개발 (The Preparation of Low Cost Activated Carbon Fibers for Removal of Volatile Organic Chemicals and Odor)

  • 임연수;유기상;김희석;정윤중
    • 한국세라믹학회지
    • /
    • 제38권10호
    • /
    • pp.928-935
    • /
    • 2001
  • 본 연구에서는 PAN계 안정화섬유를 원료로 하여 수증기를 이용한 물리적 활성화에 의해 여러 등급의 활성탄소섬유를 제조하고, 비표면적, 요오드 흡착량, 미세구조, 세공구조 등을 측정하여 제조조건에 따른 그 특성변화를 고찰하였다. 수증기를 이용한 물리적 활성화에서 기존의 탄화과정과 활성화과정의 2단계를 이용한 공정과, 탄화공정과 활성화 공정을 동시에 수행하는 1단계 활성화과정을 비교함으로써 저가로 활성탄소섬유를 제조할 수 있는 제조방법을 연구하였다. 2단계 법에서는 안정화 섬유를 $900^{\circ}C$에서 탄화한 후 이를 다시 $900^{\circ}C$에서 활성화하는 방법으로 $1019m^2/g$의 비표면적을 갖는 활성탄소섬유를 얻었으나 1단계 방법에서는 $900^{\circ}C$에서 $1636m^2/g$의 비표면적을 갖는 활성탄소섬유를 제조하였다. 이들 활성탄소섬유 사이에는 비표면적, 요오드 흡착력, 기공분포 등이 서로 차이가 있음에도 불구하고, Brunauer-Deming-Deming-Teller(BDDT)에 의한 분류에서는 제I형을 나타내는 공통점도 가지고 있었다.

  • PDF

$SnO_2$계 일산화탄소 가스 감지 소자의 주위온도, 습도 의존성에 관한 연구 (Dependency of SnO2 System Carbon Monoxide Gas Sensor on the Atmospheric Temperature & Humidity)

  • 정형진;김종만;이전국
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.1004-1010
    • /
    • 1990
  • SnO2-ThO2-PdCl2-In2O3 gas sensing ceramic systems were studied in order to lowr the operating temperatures and reduce the dependence of ambient temperatures and humidities. Sensing materials were coated by brush on the alumina tube followed by the impregnation of solidfier(ethylsilicate). Coated species were dried and sintered at 75$0^{\circ}C$ for 30min. carbon monoxide gas detecting sensitiviteis were measured in various ambinet temperatures and humidities. In the composition of 94SnO2-5ThO2-PdCl2 system carbon monoxide gas detecting sensors showed the highest detecting sensitivities and the lowest operating temperature(15$0^{\circ}C$). As the ambient temperatures and humidities were increased, sensitivities were decreased. Because the oscillation effects were observed at high humidities, it was suggested that the sensitivities of sensors depend greatly on the humidities.

  • PDF

실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성 (Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture)

  • 김종찬;이은주;김득중
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성 (Preparation of Porous Carbon Support Using Carbon Nanofiber)

  • 김명수;정상원;우원준;임연수
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

탄소섬유 강화 반응소결 탄화규소의 탄소섬유 첨가량에 따른 기계적 특성 변화 (Variation of Mechanical Properties by Carbon Fiber Volume Percent of Carbon Fiber Reinforced Reaction Bonded SiC)

  • 윤성호;양진오;조영철;박상환
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.373-378
    • /
    • 2011
  • The composite added with surface-coated chopped carbon fiber showed the microstructure of a 3 dimensional discretional arrangements. The fiber reinforced reaction bonded silicon carbide composite, containing the 50 vol% carbon fiber, showed the porosity of < 1 vol%, 3-point bending strength value of 250MPa and fracture toughness of 4.5 $MPa{\cdot}m^{1/2}$. As the content of carbon fiber was increased from 0 vol% to 50 vol% in the composite, fracture strength was decreased due to the increase of carbon fiber, which has a less strength than SiC and molten Si. On the other hand, the fracture toughness was increased with increasing the amount of carbon fiber. According to the polished microstructure, carbon fiber was shown to have a random 3 dimensional arrangement. Moreover, the fiber pull-out phenomenon was observed with the fractured surface, which can explain the increased fracture toughness of the composite containing high content of carbon fiber.

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • 한국세라믹학회지
    • /
    • 제45권4호
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.433-438
    • /
    • 2010
  • Fe-carbon/$TiO_2$ composites were prepared by a sol-gel method using AC, ACF, CNT and $C_{60}$ as carbon precursors and were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The activity of the prepared photocatalysts was investigated by degradation reaction of methylene blue (MB) irradiated with UV lamp. Effects of different carbon sources and irradiation time on photocatalytic activity were also investigated. The results showed that the photocatalytic activity of the Fe-carbon/$TiO_2$ composites was much higher than that of pristine $TiO_2$ and Fe/$TiO_2$ composites. The prominent photocatalytic activity of Fecarbon/$TiO_2$ composites could be attributed to both the effects of photo-adsorption and electron transfer by carbon substrate. In addition, the higher photocatalytic activity of Fe-carbon/$TiO_2$ composites can be compared with that of carbon/$TiO_2$ and Fe /$TiO_2$ composites due to cooperative effects between Fe and carbon.