• Title/Summary/Keyword: carbon ceramic

Search Result 762, Processing Time 0.029 seconds

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF

Fabrication and Characterization of Sol-Gel Ternary Titanium Silicate Waveguides

  • Junmo Koo;Han, Sang-Soo;Bae, Byeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.89-94
    • /
    • 1996
  • Aluminum and zinc titanium silicate sol-gel films were fabricated for application of waveguide and the effect of additions of ZnO and $Al_2O_3$ to binary titanium silicate films was investigated. During firing, the films are densified as they shrunk and their refractive index increases in the range of 1.58-1.83 depending on the film composition. The attenuation of the waveguides is not sensitive to changes in composition except for zinc titanium silicate waveguides which have substantially higher attenuation. However, the increase in the attenuation with aging of the waveguides depend upon the composition of waveuides. The addition $Al_2O_3$ or the reduced $SiO_2$ content in the composition appears to slow the deterioration of the waveguides due to the formation of more stable bonds and increased acidity on the film surface. Also, the wavelength dependence of the attenuation of the waveguides varies with composition. The attenuation of the waveguides except for the $65SiO_2{\cdot}35TiO_2$ composition are not Rayleigh scatter limited, suggesting the absorption loss of the waveguides due to the effects of residual carbon and structural defects in the films.

  • PDF

North Korea Cement Industry in Satellite Imagery (위성사진으로 본 북한의 시멘트 산업)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.198-214
    • /
    • 2019
  • The possibility of economic exchange with North Korea is increasing, but there is still a shortage of information of cement industry, which occupies the largest proportion of North Korean construction material industry. Therefore, this study researched the status of cement production facility management using satellite photographs of 16 cement factories in North Korea, and examined the operating status of North Korean cement industry by observing smoke discharged from the chimneys of the cement production facilities. When the satellite photographs were analyzed, it was observed that the monthly stack fog ratio of the North Korean cement factories was 55% in 2016, 60% in 2017 and nearly 65% in 2018. This demonstrates that the average operating ratio has been increasing continuously. However, the operation rate of the five major cement factories reaches the limit, actual cement production is estimated to have maintained the previous level or small increased.

Study on Design and Driving Characteristics of T-Shaped Piezoelectric Actuators (T형상 압전 엑추에이터의 설계 및 구동특성 연구)

  • Kim, Tae-Hoon;Park, Min-Ho;Jeong, Seong-Su;Jun, Ho-Ik;Cheon, Seong-Kyu;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.30-34
    • /
    • 2019
  • A newly proposed T-shape piezoelectric actuator, composed of piezoelectric benders, was designed and studied. This actuator has four legs, and can walk in both forward and backward directions. The piezoelectric actuator has a simple structure and can be easily fabricated. It consists of a piezoelectric bender and a joint. The piezoelectric bender is composed of carbon and ceramic materials. Therefore, there is an advantage in that it can be fabricated on a very small scale. Elliptical displacements of the piezoelectric actuators were analyzed by finite element analysis. Elliptical motion at the tip occurred at two voltages having a 90-degree phase difference. Based on the finite element analysis results, prototype actuators with maximum displacements were fabricated, and the characteristics of their movements were characterized.

Development of C/SiC Composite Parts for Rocket Propulsion (로켓 추진기관용 C/SiC 내열부품 개발)

  • Kim, Yunchul;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.68-77
    • /
    • 2019
  • C/SiC composites were developed by a liquid silicon infiltration(LSI) method for use as heat-resistant parts of solid and liquid rocket propulsion engines. The heat resistance characteristics according to the composition ratio (carbon / silicon / silicon carbide) were evaluated by specimen test through arc plasma, supersonic torch test. An ablation equation for oxidation reactions was presented. Through the combustion test it was verified that various parts such as nozzle insert, exit cone and combustion chamber heat resistant parts for rocket propulsion can be manufactured and proved high ablation performance and thermal structure performance.

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

The effect of using laser for ceramic bracket bonding of porcelain surfaces (세라믹 브라켓 부착 시 레이저를 이용한 포세린 표면처리 효과)

  • An, Kyung-Mi;Sohn, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Objective: The purpose of this study was to investigate the effect of using laser for ceramic bracket bonding of porcelain surfaces and to compare it with conventional treatment of porcelain surfaces. Methods: Ninety feldspathic porcelain specimens were divided into 9 groups of 10, with each group having different surface treatments performed. Surface treatment groups were orthophosphoric acid, orthophosphoric acid with silane, hydrofluoric acid, hydrofluoric acid with silane, sandblasted, sandblasted with silane, laser etched, laser etched with silane, and glazed surface served as a control group. In the laser etched groups, the specimens were irradiated with 2-watt superpulse carbon dioxide ($CO_2$) laser for 20 seconds. Ceramic brackets were bonded with light-cure composite resin and all specimens were stored in water at $37^{\circ}C$ for 24 hours. Shear bond strength was determined in megapascals (MPa) by shear test at 1 mm/minute crosshead speed and the failure pattern was assessed. For statistical analysis, one-way ANOVA and tukey test were used. Results: Statistical analysis showed significant differences between the groups. The HFA + S group showed the highest mean shear bond strength ($13.92{\pm}1.94\;MPa$). This was followed by SB + S ($10.16\;{\pm}\;1.27\;MPa$), HFA ($10.09\;{\pm}\;1.07\;MPa$), L + S ($8.25\;{\pm}\;1.24\;MPa$), L ($7.86\;{\pm}\;0.96\;MPa$), OFA + S ($7.22\;{\pm}\;1.09\;MPa$), SB ($3.41\;{\pm}\;0.37\;MPa$), OFA ($2.81\;{\pm}\;0.37\;MPa$), G ($2.46\;{\pm}\;1.36\;MPa$), Bond failure patterns of HFA and silane groups, except L + S, were cohesive modes in porcelain while adhesive failure was observed in the control group and the rest of the groups. Conclusions : A 2-watt superpulse $CO_2$ laser etching of porcelain surfaces can provide a satisfactory result for porcelain surface treatment for ceramic bracket bonding. Laser irradiation may be an alternative conditioning method for the treatment of porcelain surfaces.

Microstructural analysis of the single crystalline AlN and the effect of the annealing on the crystalline quality (단결정 AlN의 미세구조 분석 및 어닐링 공정이 결정성에 미치는 영향)

  • Kim, Jeoung Woon;Bae, Si-Young;Jeong, Seong-Min;Kang, Seung-Min;Kang, Sung;Kim, Cheol-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.152-158
    • /
    • 2018
  • PVT (Physical Vapor Transport) method has advantages in producing high quality, large scale wafers where many researches are being carried out to commercialize nitride semiconductors. However, complex process variables cause various defects when it had non-equilibrium growth conditions. Annealing process after crystal growth has been widely used to enhance the crystallinity. It is important to set appropriate temperature, pressure, and annealing time to improve crystallinity effectively. In this study, the effect of the annealing conditions on the crystalline structure variation of the AlN single crystal grown by PVT method was investigated with synchrotron whitebeam X-ray topography, electron backscattered diffraction (EBSD), and Rietveld refinement. X-ray topography analysis showed secondary phases, sub-grains, impurities including carbon inclusion in the single crystal before annealing. EBSD analyses identified that sub-grains with slightly tilted basal plane appeared and the overall number of grains increased after the annealing process. Rietveld refinement showed that the stress caused by the temperature gradient during the annealing process between top and bottom in the hot zone not only causes distortion of grains but also changes the lattice constant.