• Title/Summary/Keyword: carbon/Epoxy composite

Search Result 620, Processing Time 0.029 seconds

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

다이어몬드 입자드릴에 의한 탄소섬유 에폭시 복합재료의 드딜링 특성에 관한 연구

  • 김형철;김기수;함승덕;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.115-121
    • /
    • 1993
  • The carbon fiber epoxy composite materials have some problems, for example, seperation between carbon fiber and epoxy, delamination of lamina etc. Also, the tool wear is very serious. Therefore, we need to improve the shape of drill and condtion of drilling if possible. In this study, machinability of the carbon fiber epoxy composite materials in drilling was experimentlly investigated to establish the efficient shape of drill.

  • PDF

Development of epoxy resin with modified thermoplastic polymer and application to the carbon fiber composites (개질된 열가소성 고분자를 이용한 에폭시 수지 개발과 탄소섬유 복합재료에의 응용)

  • 이광기;김민영;김원호;안병현;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.237-240
    • /
    • 2002
  • Amino terminated polyetherimide(ATPEI) has been synthesized by bisphthalic anhydride arid m-phenylenediamine, after that characterized by differential scanning calorimetry(DSC), thermogravimetric analyzer(TGA). Fourier transform (FT-IR) spectroscopy and gel permeation chromatography(GPC). ATPEI was blend to improve the toughness of bisphenol-A type epoxy resin which was cured by nadic methyl anhydride(NMA). The fracture toughness and the molphology of the toughened epoxy resin was evaluated. The toughness of ATPEI modified epoxy resin was higher than that of the PEI modified epoxy resin. In addtion, carbon fiber/ATPEI modified epoxy resin composites were fabricated and the mechanical properties of the resulted composites were investigated.

  • PDF

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity (고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발)

  • Kim, Hyeonil;Ko, Heung Cho;You, Nam-Ho
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites using Electro-Micromechanical Techniques and Nondestructive Evaluations

  • Park, Joung-Man;Lee, Sang-Il
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Interfacial adhesion and nondestructive behavior of electrodeposited (ED) carbon fiber rein-forced composites were evaluated using electro-micromechanical techniques and acoustic emission (AE). The interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated fiber. This might be expected because of the possibility of chemical or hydrogen bonding in an electrically adsorbed polymeric interlayer. The logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when fiber fracture occurred, whereas that of the ED composite increased relatively gradually to infinity. This behavior may arise from the retarded fracture time due to enhanced IFSS. In single- and ten-carbon fiber composites, the number of AE signals coming from interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of the each first fiber fractures increased in the ten-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of the logarithmic electrical resistance increased.

  • PDF

Highly flexible dielectric composite based on passivated single-wall carbon nanotubes (SWNTs)

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Single-walled carbon nanotubes (SWNTs) was modified with various length of linear alkyl chains and passivated to form dielectric filler. The modified SWNTs embedded into epoxy matrix to fabricate a flexible composite with high dielectric constant. The dielectric behavior of the composite was significantly changed with various alkyl chain length(n) of pyrene. The dielectric constant of the epoxy/SWNTs composite significantly increased with respect to increase in length of alkyl chain at the frequency range from 10 to 105Hz (n=12and18).We also found that the passivated epoxy/SWNTs composite with high dielectric constant presented low dielectric loss. The resulted dielectric performances corresponded to de-bundling of nanotubes and their distribution behavior in the matrix in terms of tail length of alkyl pyrene in the passivation layer.

A Study on Composite Archery Bow Limbs (복합재료 양궁 활날개에 관한 연구)

  • 조치룡;김동욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.219-222
    • /
    • 2002
  • A new designed composite archery bow limbs are developed in this study. The characteristic F-X curve in current recurve archery bow is first studied for a reference. Based on this, a composite archery bow is designed to obtain a higher strain Energy and good vibration performance. Carbon/Epoxy prototype archery bow limbs are made from autoclaving and test on INSTRON 5567 test machine. The experimental results show that the new designed archery bow is powerful and stable.

  • PDF

Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins Bearing Phenylcyclohexyl Mesogenic Moieties (Phenylcyclohexyl mesogenic moieties를 함유한 고 열전도성 액정성 에폭시 수지의 개발)

  • Jeong, Iseul;Kim, Youngsu;Goh, Munju
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2017
  • The new liquid crystalline (LC) epoxy was designed by substituting the phenylcyclohexyl (PCH) mesogen moiety with an alkyl chain at the 2,5 position of the diglycidyl terephthalate. The mesomorphic properties were evaluated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). All LC epoxy derivatives exhibited an enantiotropic smectic phase upon heating and cooling process. The LC phase temperature range was widened by mixing the eutectic mixture of LC epoxies. Interestingly, the cured LC epoxy exhibited the highest thermal conductivity of $0.4W{\cdot}m^{-1}{\cdot}K^{-1}$. The novel LC epoxy with high thermal conductivity might be used as a composite material for electronic and display devices.