Browse > Article
http://dx.doi.org/10.12925/jkocs.2015.32.1.40

Highly flexible dielectric composite based on passivated single-wall carbon nanotubes (SWNTs)  

Jeong, Hyeon-Taek (Department of Chemical Engineering, Daejin University)
Kim, Yong-Ryeol (Department of Chemical Engineering, Daejin University)
Publication Information
Journal of the Korean Applied Science and Technology / v.32, no.1, 2015 , pp. 40-47 More about this Journal
Abstract
Single-walled carbon nanotubes (SWNTs) was modified with various length of linear alkyl chains and passivated to form dielectric filler. The modified SWNTs embedded into epoxy matrix to fabricate a flexible composite with high dielectric constant. The dielectric behavior of the composite was significantly changed with various alkyl chain length(n) of pyrene. The dielectric constant of the epoxy/SWNTs composite significantly increased with respect to increase in length of alkyl chain at the frequency range from 10 to 105Hz (n=12and18).We also found that the passivated epoxy/SWNTs composite with high dielectric constant presented low dielectric loss. The resulted dielectric performances corresponded to de-bundling of nanotubes and their distribution behavior in the matrix in terms of tail length of alkyl pyrene in the passivation layer.
Keywords
Single-walled carbon nanotubes (SWNTs); alkyl pyrene; passivation; dielectric constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang Rao, C. P. W., "Material characterization of a high-dielectricconstant polymer-ceramic composite for embedded capacitor for RF applications", Journal of Applied Polymer Science, 92, 2228 (2004).   DOI
2 Popielarz, R.; Chiang, C. K.; Nozaki, R.; Obrzut, J., "Dielectric Properties of Polymer/Ferroelectric Ceramic Composites from 100 Hz to 10 GHz", Macromolecules, 34, 5910 (2001).   DOI
3 Swapan K. Bhattacharya, R. R. T., "Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates", Journal of Materials Science:Materials in Electronics, 11, 253 (2000).   DOI
4 Y. Bai, Z.-Y. C., V. Bharti, H. S. Xu, and Q. M. Zhang, "High-dielectric-constant ceramic-powder polymer composites", Appl. Phys. Lett, 76, 3804 (2000).   DOI
5 Lan Wang, Z.-M. D., "Carbon nanotube composites with high dielectric constant at low percolation threshold", Appl. Phys. Lett., 87, 042903 (2005).   DOI
6 Q. M. Zhang, H. L., Martin Poh, Feng Xia, Z.-Y. Cheng, Haisheng Xu, Cheng Huang, "An all-organic composite actuator material with a high dielectric constant", Nature, 419, 284 (2002).   DOI
7 Jing-Wen Wang, Q.-D. S., Chang-Zheng Yang, Qi-Ming Zhang, "High Dielectric Constant Composite of P(VDF-TrFE) with Grafted Copper Phthalocyanine Oligomer", Macromolecules, 37, 2294 (2004).   DOI
8 Cheng Huang, Q. M. Z., Ji Su "High-dielectric-constant all-polymer percolative composites", Appl. Phys. Lett., 82, 3502 (2003).   DOI
9 J. K. W. Sandler, J. E. K., I. A. Kinloch, M. S. P. Shaffer, A. H. Windle, "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites", Polymer, 44, 5893 (2003).   DOI
10 B. E. Kilbride, J. N. C., J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau "Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films", Journal of Applied Physics, 92, 4024 (2002).   DOI
11 Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H., "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization", J. Am. Chem. Soc, 123, 3838 (.2001).   DOI
12 Mildred S. Dresselhaus, G. D., Phaedon Avouris, "Carbon Nanotubes: Synehesis, Structure, Properties, and Applications", Springer-Verlag Berlin Heidelberg NewYork: Berlin, 80 (2001).
13 Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y. P., "Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes", J.Am. Chem. Soc., 126, 1014 (2004).   DOI
14 Dirk M. Guldi, G. M. A. R. N. J. N. T. M. P., "Integrating Single-Wall Carbon Nanotubes into Donor-Acceptor Nanohybrids", Angewandte Chemie International Edition, 43, 5526 (2004).   DOI
15 Ehli, C.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Guldi, D. M.; Paolucci, F.; Marcaccio, M.; Paolucci, D.; Melle-Franco, M.; Zerbetto, F.; Campidelli, S.; Prato, M., "Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids", J. Am. Chem. Soc., 128, 11222 (2006).   DOI
16 Paloniemi, H.; Aaritalo, T.; Laiho, T.; Liuke, H.; Kocharova, N.; Haapakka, K.; Terzi, F.; Seeber, R.; Lukkari, J., "Water-Soluble Full-Length Single-Wall Carbon Nanotube Polyelectrolytes: Preparation and Characterization", J. Phys. Chem. B, 109, 8634 (2005).   DOI
17 Zhang, J.; Lee, J. K.; Wu, Y.; Murray, R. W., "Photoluminescence and Electronic Interaction of Anthracene Derivatives Adsorbed on Sidewalls of Single-Walled Carbon Nanotubes", NanoLett., 3, 403 (2003).   DOI
18 Shvartzman-Cohen, R.; Levi-Kalisman, Y.; Nativ-Roth, E.; Yerushalmi-Rozen, R., "Generic Approach for Dispersing Single-Walled Carbon Nanotubes: The Strength of a Weak Interaction", Langmuir, 20, 6085 (2004).   DOI
19 S. G. Stepanian, V. A. K., A. Yu Glamazda, U. Dettlaff-Weglikowska, L. Adamowicz, "Combined Raman scattering and ab initio investigation of the interaction between pyrene and carbon SWNT", Molecular Physics, 101, 2609 (2003).   DOI
20 Itkis, M. E.; Perea, D. E.; Niyogi, S.; Rickard, S. M.; Hamon, M. A.; Hu, H.; Zhao, B.; Haddon, R. C., "Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy", Nano Lett, 3, 309 (2003).   DOI
21 Naotoshi Nakashima, Y. T., Hiroto Murakami, "Water-Soluble Single-Walled Carbon Nanotubes via Noncovalent Sidewall-Functionalization with a Pyrene-Carrying Ammonium Ion", Chemistry Letters, 31, 638 (2002).   DOI
22 Zorbas, V.; Ortiz-Acevedo, A.; Dalton, A. B.; Yoshida, M. M.; Dieckmann, G. R.; Draper, R. K.; Baughman, R. H.; Jose-Yacaman, M.; Musselman, I. H., "Preparation and Characterization of Individual Peptide-Wrapped Single-Walled Carbon Nanotubes", J. Am. Chem. Soc., 126, 7222 (2004).   DOI
23 Glatkowski, P. J., Arthur, D. J. US patent, US2003/0008123 (2003).