• Title/Summary/Keyword: carbon/Epoxy composite

Search Result 620, Processing Time 0.027 seconds

The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

  • Taraghi, Iman;Fereidoon, Abdolhossein;Mohyeddin, Ali
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.825-834
    • /
    • 2014
  • This manuscript presents an experimental investigation on the effect of Multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (${\leq}1%$) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.

Effect of matrix on fatigue strength of carbon fiber composite materials (탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향)

  • 유승원
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF

Two-Layered Microwave Absorber of Ferrite and Carbon Fiber Composite Substrate

  • Han-Shin Cho;Sung-Soo Kim
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.64-67
    • /
    • 1998
  • Microwave absorbing properties of ferrite-epoxy composite (absorbing layer) attached on the carbon fiber polymer composite (reflective substrate) are analyzed on the basis of wave propagation theory. A modified equation for wave-impedance-matching at the front surface of absorbing layer including the effect of electrical properties of the quasi-conducting substrate is proposed. Based on this analysis, the frequency and layer dimension that produce zero-reflection can be estimated from the intrinsic material properties of the obsorbing layer and the substrate. It is demonstrated that the microwave reflectivity of carbon fiber composite has a strong influence on the microwave absorbance of front magnetic layer.

  • PDF

Prediction of Thermal Conductivity of Spun Carbon/Phenolic Composites (스펀 탄소/페놀 복합재의 열전도도 예측)

  • 서부호;조영준;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.48-51
    • /
    • 2002
  • This paper predicted the thermal conductivity of spun carbon/phenolic composites by the thermal resistance method. This method uses the analogy between the diffusion of heat and electrical charge. To verify the theoretical predictions, the thermal conductivity of spun carbon/phenolic composites was examined experimentally. The reported thermal conductivities of graphite/epoxy composite of a eight harness satin laminate was used of the comparison with the prediction values of the model and it was noticed that a good agreement has been found.

  • PDF

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composite for Tilting Train (틸팅차량용 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Lee Eun Dong;Yoon Sung Ho;Shin Kwang Bok;Jeong Jong Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • In this study, mode II interlaminar fracture phenomena of carbon fabric/epoxy composite for tilting train were investigated. The end notched flexural specimen containing an artificial crack with the thickness of 12.5fl11l was used. The mode II interlaminar fracture toughness was evaluated through a three point bending test and the fractured surfaces were examined through a scanning electron microscope. The experimental results obtained in this study would be applicable in the design and structural analysis of the composite structures.

  • PDF

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF