• Title/Summary/Keyword: carbohydrate-based

Search Result 433, Processing Time 0.019 seconds

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho;Jo, Seung-Woo;Do, Jeong-Mi;Kim, Il-Sup;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.387-397
    • /
    • 2021
  • There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.

Garlic Inulin as a Fat Replacer in Vegetable Fat Incorporated Low-Fat Chicken Sausages

  • Jayarathna, Gayathree Nidarshika;Jayasena, Dinesh Darshaka;Mudannayake, Deshani Chirajeevi
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.295-312
    • /
    • 2022
  • Inulin is a non-digestible carbohydrate and a prebiotic that can also act as a fat replacer in various foods. This study examined the effect of replacing vegetable oil with garlic inulin on the quality traits of chicken sausages. Water-based inulin gels were prepared using garlic inulin or commercial inulin to imitate fats in chicken sausages. Chicken sausages were prepared separately replacing vegetable oil with water-based inulin gels to reach final inulin percentages of 1, 2, and 3 (w/w). The control was prepared using 3% (w/w) vegetable oil with no inulin. The physicochemical properties and thiobarbituric acid reactive substance (TBARS) value of prepared sausages were analyzed over 28-d frozen storage. Sausages with 2% garlic inulin recorded higher flavour and overall acceptability scores (p<0.05). Ash, moisture, and protein contents of the sausages were increased with increasing levels of inulin while fat content was reduced from 13.67% (control) to 4.47%-4.85% (p<0.05) in 3% inulin-incorporated products. Sausages incorporated with 2% inulin had lower lightness (L*) values than the control (p<0.05). Water holding capacity (WHC) was similar (p>0.05) among the samples. During storage L* value, pH, and WHC decreased while redness (a*) and yellowness (b*) values increased in all the samples. In addition, TBARS values were increased during the storage in all samples within the acceptable limits. In conclusion, garlic inulin can be used successfully as a fat substitute in sausages without altering meat quality parameters.

Association of ultra-processed food with diabetes and impaired fasting glucose in elderly populations (urban and rural): a cross-sectional study (도시 및 농어촌 거주 노인의 초가공식품 섭취 상태와 당뇨 및 공복혈당장애에 대한 단면연구)

  • Seung Jae Lee;Mi Sook Cho
    • Korean Journal of Community Nutrition
    • /
    • v.29 no.1
    • /
    • pp.51-64
    • /
    • 2024
  • Objectives: This study examined the association between ultra-processed food (UPF) consumption and chronic diseases in elderly Koreans. Methods: Data from the 2019-2021 Korea National Health and Nutrition Examination Survey were analyzed. Dietary intake and UPF consumption were assessed using the NOVA food classification based on 24-hour recall data from 3,790 participants (aged 65+ years). Participants were divided into 4 groups based on the quartile of energy intake from UPFs. Regions were classified as urban or rural. Multivariable logistic regression was employed to estimate the adjusted odds ratios (AORs) with 95% confidence intervals (CIs) after controlling for potential confounders. Results: Among the participants, 71.3% resided in urban and 28.7% in rural areas. Compared to the urban elderly, rural participants tended to be older, have lower education and income levels, be more likely to live in single-person households, and have a higher smoking rate (P < 0.05). Urban elderly consumed more UPFs daily (146.1 g) compared to rural residents (126.6 g; P < 0.05). "Sugar-sweetened beverages" were the most consumed category in both regions. "Sweetened milk and its products" and "traditional sauces" were prominent in urban areas, while rural elderly consumed more "traditional sauces" and "distilled alcoholic beverages." Rural areas also had a higher carbohydrate-to-calorie ratio than urban areas. Compared to the lowest quartile of UPF intake, the highest quartile was significantly associated with impaired fasting glucose only in rural areas (AOR, 1.48; 95% CI, 1.00-2.19; P for trend = 0.0014). No significant associations were observed for diabetes in either urban or rural areas. Conclusions: This study suggests that high intake of UPFs is associated with increased odds of impaired fasting glucose in rural elderly. Further research is needed to elucidate the specific negative health effects of UPFs in different populations, and targeted efforts should promote healthy diets in both urban and rural areas.

Manufacturing and Feed Value Evaluation of Wood-Based Roughage Using Lumber from Thinning of Oak and Pitch Pine (참나무류와 리기다소나무 간벌재를 이용한 목질 조사료 제조 및 사료가치 평가)

  • Kim, Seok Ju;Lee, Sung-Suk;Baek, Youl Chang;Kim, Yong Sik;Park, Mi-Jin;Ahn, Byeong Jun;Cho, Sung-Taig;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.851-860
    • /
    • 2015
  • The objective of this study was to manufacture the wood based roughage using lumber from thinning of oak and pitch pine (Pinus rigida). And the study also aimed to investigate a feed value evaluation of wood based roughages. To investigate the optimization condition of steam-digestion treatment for roughage, the wood chips of oak and pitch pine were steam-digestion treated at $160^{\circ}C$ under pressure 6 atm depending on treatment times (60 min, 90 min and 120 min) followed by the content of essential oils analyzed. The essential oil content of steam-digestion treated roughages for 90 min and 120 min were under 0.1 mL/kg. The evaluation of feed value was carried out from steam-digestion treated roughages for 90 min through feed chemical composition analysis, NRC (National research Council) modeling, ruminal degradability analysis and relative economic value analysis. The feed chemical compositions including DM (dry mater), CP (crude protein), EE (ether extract), NDF (neutral detergent fiber), ADF (acid detergent fiber), ADL (acid detergent lignin), NFC (nonfiber carbohydrate) in oak roughage were 95.4, 1.36, 3.11, 90.05, 83.85, 17.33, 6.50%, respectively, and in pitch pine roughage were 94.37, 1.33, 5.48, 87.89, 86.88, 30.56, 6.32%, respectively. Both roughages showed low level of protein and very high level of NDF. The TDN (total digestible nutrient) levels using NRC (2001) model in oak and pitch pine roughages were 40.55, 31.22%, respectively. The ruminal in situ dry matter degradability was higher in oak roughage (23.84%) than in pitch pine roughage (10.02%). The economic values of oak and pitch pine rough-ages were 235, and 210 \, respectively.

Sustainable Block Copolymer-based Thermoplastic Elastomers (지속 가능한 블록 공중합체 기반 열가소성 탄성체)

  • Shin, Jihoon;Kim, Young-Wun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow's sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.

Chemical Composition, In situ Digestion Kinetics and Feeding Value of Oat Grass (Avena sativa) Ensiled with Molasses for Nili-Ravi Buffaloes

  • Khan, Muhammad Ajmal;Sarwar, M.;Nisa, M.;Iqbal, Z.;Khan, M.S.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1127-1133
    • /
    • 2006
  • This study examined the effect of cane molasses and fermentation time on chemical composition and characteristics of oat grass silage (OGS) and its in situ digestion kinetics, intake, digestibility, milk yield and composition in buffaloes (Bubalus bubalis). Oat grass (OG) harvested at 50-days of age was ensiled in laboratory silos with cane molasses at the rate of 0, 2, 4 and 6% of OG dry matter (DM) for 30, 35 and 40 days. Silage pH was decreased while lactic acid content increased with increasing level of cane molasses and fermentation time. Dry matter (DM), crude protein (CP) and true protein (TP) content of OGS were (p<0.05) significantly higher with higher cane molasses levels. However, they were not affected by the fermentation time. Similar trends were observed for neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, acid detergent lignin and ash content of OGS. The OG ensiled for 30-days with 2% molasses was screened from laboratory study and used to determine comparative in situ DM and NDF digestion kinetics of OG and its silage. In situ DM and NDF digestibilities of OG were significantly (p<0.05) higher than OGS. Ruminal DM and NDF lag time, rate and extent of digestion of OG and its silage were similar. Two experimental diets of OG and OGS were formulated using 75:25 forage to concentrate ratio on a DM basis. Dry matter and CP intakes were similar in lactating buffaloes fed either OG- or OGS-based diets. However, NDF intake was higher in buffaloes fed the OG-compared with OGS-based diet. Apparent DM, CP and NDF digestibilities were similar in lactating buffaloes fed either OG- or OGS-based diets. Milk yield (4% FCM) was similar in buffaloes fed either OG-(10.3 kg/d) or OGS-(9.95 kg/d) based diets. Milk fat, total solids and true protein content were higher with OG compared with the OGS diet. Solids not fat and CP content were similar in milk of buffalo fed either OG or OGS. The results of this study indicate that OG ensiled with 2% molasses could safely replace 75% DM of green oat fodder in the diets of lactating buffaloes without negatively affecting intake, digestibility, milk yield and composition.

Prediction of Dry Matter Intake in Lactating Holstein Dairy Cows Offered High Levels of Concentrate

  • Rim, J.S.;Lee, S.R.;Cho, Y.S.;Kim, E.J.;Kim, J.S.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.677-684
    • /
    • 2008
  • Accurate estimation of dry matter intake (DMI) is a prerequisite to meet animal performance targets without penalizing animal health and the environment. The objective of the current study was to evaluate some of the existing models in order to predict DMI when lactating dairy cows were offered a total mixed ration containing a high level of concentrates and locally produced agricultural by-products. Six popular models were chosen for DMI prediction (Brown et al., 1977; Rayburn and Fox, 1993; Agriculture Forestry and Fisheries Research Council Secretariat, 1999; National Research Council (NRC), 2001; Cornell Net Carbohydrate and Protein System (CNCPS), Fox et al., 2003; Fuentes-Pila et al., 2003). Databases for DMI comparison were constructed from two different sources: i) 12 commercial farm investigations and ii) a controlled dairy cow experiment. The model evaluation was performed using two different methods: i) linear regression analysis and ii) mean square error prediction analysis. In the commercial farm investigation, DMI predicted by Fuentes-Pila et al. (2003) was the most accurate when compared with the actual mean DMI, whilst the CNCPS prediction showed larger mean bias (difference between mean predicted and mean observed values). Similar results were observed in the controlled dairy cow experiment where the mean bias by Fuentes-Pila et al. (2003) was the smallest of all six chosen models. The more accurate prediction by Fuentes-Pila et al. (2003) could be attributed to the inclusion of dietary factors, particularly fiber as these factors were not considered in some models (i.e. NRC, 2001; CNCPS (Fox et al., 2003)). Linear regression analysis had little meaningful biological significance when evaluating models for prediction of DMI in this study. Further research is required to improve the accuracy of the models, and may recommend more mechanistic approaches to investigate feedstuffs (common to the Asian region), animal genotype, environmental conditions and their interaction, as the majority of the models employed are based on empirical approaches.

Effects of Dietary Acidogenicity Values on Rumen Fermentation Characteristics and Nutrients Digestibility

  • Choi, Y.J.;Lee, Sang S.;Song, J.Y.;Choi, N.J.;Sung, H.G.;Yun, S.G.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1625-1633
    • /
    • 2003
  • This study was conducted to observe effects of dietary acidogenicity value (AV) on rumen fermentation characteristics and nutrients digestibility. The AV of feedstuffs was based on the dissolution of Ca from $CaCO_3$ powder added at the end of a 24 h in vitro fermentation. Three diets were formulated to be iso-energetic and iso-nitrogenous with different AV. Two experiments were involved in this study. In experiment 1, it appears that pH, $NH_3-N$ concentration and A:P ratio tended to decrease, but gas production, VFA production and DM disappearance tended to increase with increasing dietary AV. In experiment 2, the rumen pH tended to decrease in order of high AV>medium AV>low AV treatment, respectively. There were no significant effects of dietary AV on $NH_3-N$ concentration, enzyme activity and nutrient digestibility. In addition, total VFA and individual VFA concentrations tended to increase with increasing dietary AV without significance. In fact, we hypothesized that different dietary AV would affect rumen fermentation and nutrients digestibility because dietary AV was adjusted with fermentable carbohydrate sources. The present results indicate that differences in dietary AV between treatments were too small to affect rumen fermentation and its effects were minimal.

Effects of Forage Sources on Rumen Fermentation Characteristics, Performance, and Microbial Protein Synthesis in Midlactation Cows

  • Xua, Jun;Houa, Yujie;Yang, Hongbo;Shi, Renhuang;Wu, Caixia;Huo, Yongjiu;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.667-673
    • /
    • 2014
  • Eight multiparous Holstein cows ($632{\pm}12$ kg BW; $135{\pm}16$ DIM) were used in a replicated $4{\times}4$ Latin square design to evaluate the effects of forage sources on rumen fermentation characteristics, performance, and microbial protein (MCP) synthesis. The forage portion of the diets contained alfalfa hay (AH), oat hay (OH), Leymus chinensis (LC), or rice straw (RS) as the primary source of fiber. Diets were isonitrogenous and isocaloric, and cows were fed four corn silages based total mixed rations with equivalent nonfiber carbohydrate (NFC) and forage neutral detergent fiber (NDF). Dry matter intake was not affected by the source of dietary forages, ranging from 18.83 to 19.20 kg/d, consequently, milk yield was similar among diets. Because of the numerical differences in milk fat and milk protein concentrations, 4% FCM and ECM yields were unchanged (p>0.05). Mean rumen pH, NH3-N content, and concentrations of volatile fatty acids in the rumen fluid were not affected by the treatments (p>0.05). Dietary treatments did not affect the total tract apparent digestibility of dry matter, organic matter, and crude protein (p>0.05); however, digestibility of NDF and acid detergent fiber in RS diet was higher compared with AH, OH, and LC diets (p<0.05). Total purine derivative excretion was higher in cows fed AH, OH, and LC diets compared with those fed RS diet (p<0.05), consequently, estimated MCP synthesis was 124.35 g/d higher in cows fed AH diet compared with those fed RS diet (p<0.05). The results indicated that cows fed AH, OH, LC, and RS diets with an equivalent forage NDF and NFC have no unfavourable effect on the ruminal fermentation and productive parameters.

Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

  • Wu, Jing-Jing;Du, Rui-Ping;Gao, Min;Sui, Yao-Qiang;Xiu, Lei;Wang, Xiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.648-657
    • /
    • 2014
  • Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage.