• Title/Summary/Keyword: carbody

Search Result 269, Processing Time 0.028 seconds

Evaluation for structural safety of TTX under structure (틸팅차량 언더프레임의 구조안전성 평가)

  • Jeong, Jong-Cheol;Lee, Sang-Jin;Jo, Sea-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • This study has evaluated the analysis results for the under structure of Korean tilting train(TTX). TTX has many equipments which are attached below the composite carbody. Loads due to equipments on the under structure are very complex and various types as operating condition. So applied loads are considered weight of equipments and acceleration. From the analysis, the structural safety of under structure was assessed.

  • PDF

Investigation of Safety for Turnover in a Tilting Train by Carbody Tilting (차체 틸팅에 따른 전복안전도 특성평가)

  • Kim Jung-Seok;Kim Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.443-448
    • /
    • 2004
  • In this study, we have performed investigation of safety for turnover in the tilting train. In the tilting train, the safety for turnover is one of the most important studies because the train incline the carbody inward curve during curve negotiation. Therefore, we have carried out dynamic analysis considering wind force and unbalanced lateral acceleration effects. From this study, we have evaluate the safety for turnover according to the design parameters of the tilting link mechanism.

  • PDF

On study the diagnosis of carbody structure for EMU (도시철도차량 구조체의 정밀진단에 관한 고찰)

  • Chung Jong-Duk;Yun Sung-Cheol;Hong Sun-Ho;Chun Han-Jun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.706-711
    • /
    • 2003
  • This paper describes EDM testing, Magnetic particle testing and Ultrasonic testing results of carbody structure for EMU. Carbodys are subject to vibration, impact and wear which can cause severe defects leading to a fatal accident. The purpose of the test is to prove the endurance of Korean EMU for the commercial operation.

  • PDF

Development of Production Technology for Aluminum Rolling Stocks (알루미늄 철도차량의 생산 기술 개발)

  • 서승일
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.505-511
    • /
    • 1998
  • Production technologies for aluminum rolling stocks are mainly related to welding of aluminum alloys. Automatic welding of extrusion profiles and control of welding deformations are the important contents of the production technologies. Another production technology other than welding is the technique for surface treatment of aluminum carbody. In this paper, problems caused during construction of the test carbody are described and the remedies for the problems are suggested. The accumulated experiences and systematic data will be helpful for the mass production of aluminum rolling stocks in the furture.

  • PDF

A Study on the Painting of Aluminum Carbody (알루미늄 차량의 도장작업에 대한 검토)

  • 이찬석;서승일
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.489-496
    • /
    • 1998
  • Although the surface of aluminum alloy has good corrosion resistance property, the surface of the aluminum rolling stock should be painted for good appearance and protection of the body. For better painting of the aluminum carbody, the surface must also be well pretreated. In this paper, painting process of the aluminum rolling stock is described and the test results of the painted surface is presented. As accumulated data concerning to the painting technology for the aluminum rolling stocks are absent in our country, the presented test results will be helpful for mass production of aluminum rolling stocks in the near future.

  • PDF

Damping Characterization of the Double-skin Aluminum Extruded Panels for Rolling Stock Carbody (철도차량 차체용 더블 스킨 알루미늄 압출 패널의 감쇠특성)

  • Kang, Gil-Hyun;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3197-3202
    • /
    • 2013
  • When car builder designs the large carbody structure of railway vehicles, it is necessary to optimize the damping characteristics through the analysis of structure borne noise such as sound pressure level(SPL). This paper is a study on the structure borne noise analysis by characterizing the damping of double skin aluminum extruded panels for rolling stock carbody. The normalized SPL was calculated based on the simple source theory using measured mechanical mobility parameters from vibration tests(i.e. point, transfer and modal mobility). The reduced SPL was predicted by using finite element method by applying loss factor of damping material into laminated shell elements. It was found out that the damping material coated on the panels like underframe, which part is seriously affected by vibration during train run, took effect to reduce noise level.

Environmental Impact Assessment of the Carbody of a Electric Motor Unit(EMU) Using Simplified Life Cycle Assessment(S-LCA) (간략화 전과정 평가(S-LCA) 기법을 이용한 전동차 구체의 환경성 평가)

  • Lee Jae-Young;Mok Jai-Kyun;Jeong In-Tae;Kim Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.520-524
    • /
    • 2005
  • It is consequential to reduce the environmental impact of a product for sustainable development in 21st Century. In the field of transportation, especially, the technological market concerned about reduction and assessment of greenhouse gas emission is expected to be extended. The LCA gas been esteemed and utilized as a realistic alternative greenhouse gas emission is expected to be extended. The LCA has been esteemed and utilized as a realistic alternative to improve the environment by the assessment of environmental impacts. In this study, simplified life cycle assessment(S-LCA), was performed to analyze the environmental impacts quantitatively, which were produced through the life cycle of a electric motor unit(EMU). The object of the present work is rth investigate main parameters of environmental impacts and to establish the plans to improve the environment impact of EMU. As a result of quantitative assessment for environmental impact and manufacturing, the EMU carbody made of SUS showed acidification(AD) and marine water aquatic ecotoxicity(MAET) the most, while that made of Mild showed high impact of global warning(GW) and abiotic resources depletion(ARD). For the SUS EMU, the high AD and MAET impact is occurred by the discharged pollutants during acid-washing process. Also, high value of GW and ARD for Mild EMU is resulted from the consumption of iron ore, coal and crude oil during manufacturing. Therefore, the environment impact of carbody would be decreased by enhancing of energy efficiency and the lightening the weight of it.

A Study on Lightweight Design of Double Deck High-Speed Train Hybrid Carbody Using Material Substitution and Size Optimization Method (소재대체법과 치수최적화 기법을 이용한 2층 고속열차 하이브리드 차체 구조물의 경량 설계 연구)

  • Im, Jae-Moon;Jung, Min-Ho;Kim, Jong-Yeon;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The purpose of this paper is to suggest a lightweight design for the aluminum extrusion carbody structure of a double deck high-speed train using material substitution and size optimization method. In order to conduct material substitution, the topology optimization was used to determine the application parts of sandwich composites at the carbody structures. The results of analysis showed that sandwich composites could be applied at roof and 2nd underframe. The size optimization was used to determine thickness of the aluminum extruded and carbon/epoxy composite. The design variable, state constraint and objective function were formulated to solve the size optimization, and then, the feasible design was presented by these conditions. The results of the lightweight design showed that the weight of double deck high-speed train hybrid carbody could be reduced by 2.18(17.70%) tons.

Study for Loading Characteristic of Tilting Mechanism on Korea Tilting Train (II) - Adjustmemt for Interface of carbody and Bogie (한국형틸팅열차 틸팅기구장치 부하특성 평가 연구(II) - 대차/차체 인터페이스 조정에 의한 정적부하 영향분석)

  • Ko, Tae-Hwan;Lee, Wang-Sang;Lee, Bum-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.951-956
    • /
    • 2011
  • As the evaluation of loading characteristic on tilting mechanism is the most important one of the function test of tilting mechanism, the changing characteristic of load must be investigated on tilting of carbody for both the static and running condition of train. In this study, we reduced the load of tilting mechanism by adjusting the interface of carbody and bogie such as the weight balance, level of underframe, height of leveling valve, height of axle box and center position of tilting actuator with the characteristic curve of load for optimal condition of the tilting mechanism obtained in the previous study. Furthermore, the factor and effect of the interfacial structures respecting the load of tilting mechanism was evaluated by analyzing the changing characteristic of load obtained in the process of adjustment of interfaces. From these data, we will propose the maintenance standards for interfacial structures and tilting mechanism in order to minimize the load of tilting mechanism by analyzing in detail the characteristic of load for the main factors of the interfacial structure effecting on the load of tilting mechanism.

  • PDF

Dynamic analysis of KTX running characteristics (KTX 주행특성 해석)

  • Kang Bu-Byoung;Chung Heung-Chai;Kim Jae-Chul;Goo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.718-723
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

  • PDF