• Title/Summary/Keyword: carbide phase

Search Result 262, Processing Time 0.028 seconds

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Effect of Critical Cooling Rate on the Formation of Intermetallic Phase During Rapid Solidification of FeNbHfBPC Alloy

  • Kim, Song-Yi;Oh, Hye-Ryeong;Lee, A-Young;Jang, Haneul;Lee, Seok-Jae;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.235-240
    • /
    • 2021
  • We present the effect of the critical cooling rate during rapid solidification on the nucleation of precipitates in an Fe75B13P5Nb2Hf1C4 (at.%) alloy. The thermophysical properties of the rapidly solidified Fe75B13P5Nb2Hf1C4 liquids, which were obtained at various cooling rates with various sizes of gas-atomized powder during a high-pressure inert gas-atomization process, were evaluated. The cooling rate of the small-particle powder (≤20 ㎛) was 8.4×105 K/s, which was 13.5 times faster than that of the large-particle powder (20 to 45 mm; 6.2×104 K/s) under an atomized temperature. A thermodynamic calculation model used to predict the nucleation of the precipitates was confirmed by the microstructural observation of MC-type carbide in the Fe75B13P5Nb2Hf1C4 alloy. The primary carbide phase was only formed in the large-particle gas-atomized powder obtained during solidification at a slow cooling rate compared to that of the small-particle powder.

Chemical vapor deposition of $TaC_xN_y$ films using tert-butylimido tris-diethylamido tantalum(TBTDET) : Reaction mechanism and film characteristics

  • Kim, Suk-Hoon;Rhee, Shi-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • Tantalum carbo-nitride($T_aC_xN_y$) films were deposited with chemical vapor deposition(CVD) using tert-butylimido tris-diethylamido tantalum (TBTDET, $^tBu-N=Ta-(NEt_2)_3$, $Et=C_2H_5$, $^tBu=C(CH_3)_3$) between $350^{\circ}C$ and $600^{\circ}C$ with argon as a carrier gas. Fourier transform infrared (FT-IR)spectroscopy was used to study the thermal decomposition behavior of TBTDET in the gas phase. When the temperature was increased, C-H and C-N bonding of TBTDET disappeared and the peaks of ethylene appeared above $450^{\circ}C$ in the gas phase. The growth rate and film density of $T_aC_xN_y$ film were in the range of 0.1nm/min to 1.30nm/min and of $8.92g/cm^3$ to $10.6g/cm^3$ depending on the deposition temperature. $T_aC_xN_y$ films deposited below $400^{\circ}C$ were amorphous and became polycrystal line above $500^{\circ}C$. It was confirmed that the $T_aC_xN_y$ film was a mixture of TaC, graphite, $Ta_3N_5$, TaN, and $Ta_2O_5$ phases and the oxide phase was formed from the post deposition oxygen uptake. With the increase of the deposition temperature, the TaN phase was increased over TaC and $Ta_3N_5$ and crystallinity, work function, conductivity and density of the film were increased. Also the oxygen uptake was decreased due to the increase of the film density. With the increase of the TaC phase in $T_aC_xN_y$ film, the work function was decreased to 4.25eV and with the increase of the TaN phase in $T_aC_xN_y$ film,it was increased to 4.48eV.

  • PDF

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Solidification Characteristics of Squeeze Cast Al Alloy Composites (Squeeze Cast한 Al기지 금속복합재료의 응고거동)

  • Kim, Dae-Up;Kim, Jin;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.11 no.3
    • /
    • pp.208-216
    • /
    • 1991
  • The solidification behavior of the squeeze cast composites of aluminum alloys reinforced with boron fiber($100{\mu}m$) and silicon carbide fibers($140{\mu}m$ and $15{\mu}m$) were investigated. Al-4.5wt%Cu and Al-l0wt%Mg were chosen for the matrix phase of the composites. In the squeeze cast specimen with high thermal difference between fiber and melt, the average secondary dendrite arm spacing(DAS) in reinforced alloy is smaller than that in unreinforced alloy. It was also observed that primary ${\alpha}$ and non-equilibrium eutectic, which seems to be penetrated and solidified at the final stage of the solidification of the matrix, are irregularly distributed around fibers. It is considered that cold fibers serve as heterogeneous nucleation site. While in the remelted and resolidified specimen without temperature difference, the DAS was not changed with reinforcement and microstructure reveals non-equilibrium eutectic with relatively uniform thickness around fibers. It might be evident the nucleation starts at interfiber region. Microsegregation decreases with the decrease in cooling rate and with reinforcement in the as-squeeze cast specimen. Al-10wt% Mg alloy shows less microsegregation than Al-4.5wt%Cu alloy.

  • PDF

Liquid-Phase Sintered SiC Ceramics with Oxynitride Additives

  • Rixecker, G.;Biswas, K.;Wiedmann, I.;Sldinger, F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.1-33
    • /
    • 2000
  • Silicon carbide ceramics with sintering additives from the system AlN-Y$_2$O$_3$ can be gas-pressure sintered to theoretical density. While commonly a combination of sesquioxides is used such as Al$_2$O$_3$-Y$_2$O$_3$, the oxynitrid additives offer the advantage that only a nitrogen atmosphere is require instead of a powder. By starting form a mixture of ${\beta}$-SiC and ${\alpha}$-SiC, and by performing dedicated heat treatments after densification, anisotropic grain growth is obtained which leads to a platelet microstructure showing enhance fracture toughness. In the present work, recent improvement of the mechanical behaviour of these materials at ambient and high temperatures is reported. By means of a surface oxidation treatment in air it is possible to obtain four-point bending strengths in excess of 1 GPa, and the strength retention at high temperatures is significantly improved.

  • PDF

Inspection of Ceramic Coatings Using Nanoindentation and Frequency Domain Photoacoustic Microscopy

  • Steen, T.L.;Basu, S.N.;Sarin, V.K.;Murray, T.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.390-402
    • /
    • 2006
  • The elastic properties and thickness of mullite environmental barrier coatings grown through chemical vapor deposition (CVD) on silicon carbide substrates were measured using frequency domain photoacoustic microscopy. In this technique, extremely narrow bandwidth surface acoustic waves are generated with an amplitude modulated laser source. A photorefractive crystal based interferometer is used to detect the resulting surface displacement. The complex displacement field is mapped as a function of source-to-receiver distance in order to extract the wavelength of the surface acoustic wave at a given excitation frequency, and the phase velocity is determined. The coatings tested exhibited spatial variations in thickness and mechanical properties. The measured surface wave dispersion curves were used to extract an effective value for the elastic modulus and the coating thickness. Nanoindentation was used to validate the measurements of the effective elastic modulus. The average elastic modulus measured through the coating thickness using nanoindentation is compared to the effective modulus found using the photoacoustic system. Optical microscopy is used to validate the thickness measurements. The results indicate that the photoacoustic microscopy technique can be used to estimate the effective elastic properties in coatings exhibiting spatial inhomogeneities, potentially providing valuable feedback for the optimization of the CVD growth process.

Stucture and Intergranular Segregation of WC/WC Grain Boundaries in WC-Based Cemented Carbides (WC기 초경합금중 WC/WC界面의 구조와 입계편석)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.612-618
    • /
    • 2000
  • The WC/WC grain boundary structure and intergranular segregation in WC-Co and WC-VC-Co cemented carbides were investigated by high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy in order to elucidate whether contiguous boundaries were present or not at the atomic level. Some grain boundaries were separated by liquid phase, while others were contiguous at the atomic level. Cobalt was found to be segregated to WC/WC grain boundaries in WC-Co. Cobalt and vanadium were co-segregated to grain boundaries in WC-VC-Co. The segregation width in both materials was about 6 nm. These results suggest that the vanadium present in contiguous boundaries acts as an effective barrier to the migration of boundaries during sintering and annealing. This could explain the grain growth inhibiting mechanism of VC added to WC-Co.

  • PDF

Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method (전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구)

  • Lee, H.M.;Park, J.H.;Hong, S.M.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.