• Title/Summary/Keyword: carbamate pesticide

Search Result 55, Processing Time 0.035 seconds

Studies on the Residues of Carbamate Pesticide in Fruits and Vegetables (과일 및 야채의 Carbamate계 농약의 잔류량)

  • 이해금;최용순;최규열
    • Journal of Food Hygiene and Safety
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 1987
  • ABSTRACT-Agricultural products collected from the suburbs of Chuncheon in 1984 were analyzed for carbamate pesticides by GLC-NPD. O-tert-butyl phenyl methyl carbamate(BPMC) was detected in most samples and their residue levels in strawberry, tomato, cucumber, grape, apple and chinese cabbage were in the range of non-detectable to 0.2356 ppm(Av. 0.0539 ppm). 1- naphthyl methyl carbamate(N AC) were detected in cucumber, grape and chinese cabbage and their residue levels were in the range of non-detectable to 0.0265 ppm. O-cumeryl methyl carbamate(MIPC) was detected in only chinese cabbage and its residue levels were in the range of non-detectable to 0.0059 ppm. Detection frequencies of BPMC, MIPC and NAC in the chinese cabbage were higher than those the others.others.

  • PDF

Risk Factors to Predict Acute Respiratory Failure in Patients with Acute Pesticide Poisoning (급성 농약 중독환자에서 호흡 부전 발생의 위험 인자)

  • Cho, Nam-Jun;Park, Samel;Lee, Eun Young;Gil, Hyo-Wook
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.18 no.2
    • /
    • pp.116-122
    • /
    • 2020
  • Acute respiratory failure is an important risk factor for mortality in patients with acute pesticide poisoning. Therefore, it is necessary to investigate the risk factors to predict respiratory failure in these patients. This study retrospectively investigated the clinical features of respiratory failure among patients with acute pesticide poisoning requiring mechanical ventilation. This study included patients who were admitted with intentional poisoning by pesticide ingestion from January 2017 to December 2019. Paraquat intoxication was excluded. Among 469 patients with acute pesticide poisoning, 398 patients were enrolled in this study. The respiratory failure rate was 30.4%. The rate of respiratory failure according to the type of pesticide was carbamate (75.0%), organophosphate (52.6%), glufosinate (52.1%), glyphosate (23%), pyrethroid (8.9%), and others (17%). The mortality was 25.6% in the respiratory failure group. The risk factors for respiratory failure were old age, low body mass index, and ingestion of more than 300 mL. In conclusion, respiratory failure is a risk factor for mortality in pesticide poisoning. Old age, low body mass index, and ingestion of more than 300 mL are the risk factors for predicting respiratory failure.

Development, Validation, and Application of a Portable SPR Biosensor for the Direct Detection of Insecticide Residues

  • Yang, Gil-Mo;Cho, Nam-Hong
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1038-1046
    • /
    • 2008
  • This study was carried out to develop a small-sized biosensor based on surface plasmon resonance (SPR) for the rapid identification of insecticide residues for food safety. The SPR biosensor module consists of a single 770 nm-light emitting diodes (LED) light source, several optical lenses for transferring light, a hemisphere sensor chip, photo detector, A/D converter, power source, and software for signal processing using a computer. Except for the computer, the size and weight of the sensor module are 150 (L)$\times$70 (W)$\times$120 (H) mm and 828 g, respectively. Validation and application procedures were designed to assess refractive index analysis, affinity properties, sensitivity, linearity, limits of detection, and robustness which includes an analysis of baseline stability and reproducibility of ligand immobilization using carbamate (carbofuran and carbaryl) and organophosphate (cadusafos, ethoprofos, and chlorpyrifos) insecticide residues. With direct binding analysis, insecticide residues were detected at less than the minimum 0.01 ppm and analyzed in less than 100 sec with a good linear relationship. Based on these results, we find that the binding interaction with active target groups in enzymes using the miniaturized SPR biosensor could detect low concentrations which satisfy the maximum residue limits for pesticide tolerance in Korea, Japan, and the USA.

Difference in Species of Test Fish on the Determination of Short-term Bioconcentration Factor (단기간 생물농축계수의 측정에 있어서 실험어류의 종에 따른 차이)

  • 민경진;차춘근;전봉식;김근배
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • This study was performed to investigate the difference in species of test fish on the determination of short-term bioconcentration factor in zebrafish(Brachydanio rerio), red sword tail(Xiphophorus hellieri) and goldfish(Carassius auratus). Experimental concentrations of carbamates were 0.05 and 0.10 ppm and chlorothalonil were 0.005 and 0.01 ppm for 3 and 5 days, respectively. This paper reports the measured BCF value on pesticides in various species of test fish, under steady state, and examined correlation between the BCF value and depuration rate constant or LC$_{50}$ or lipid content. Carbamates and chlorothalonil concentration in fish extract and BCF of carbamate and chlorothalonil were increased as incresing test concentration. Carbamates concentration in fish extract and BCF of carbamate were decreased as incresing test period, but chlorothalonil concentration in fish extract and BCF of chlorothalonil were increased as prolonging test period. Determined pesticide concentration in fish extract and BCF were highest in red sword tail, and followed by goldfish, and zebrafish. Determined depuration rate constant were highest in zebrafish, and followed by goldfish, and red sword tail. 96hr-LC$_{50}$ were highest in red sword tail, and followed by zebrafish, and goldfish. Lipid compositions were highest in red sword tail, and followed by goldfish, and zebrafish. Therefore, it is suggested that the difference of BCF between each pesticide due to those of lipid composition of fish and deputation rate constant, while LC$_{50}$ have no effect on BCF.

  • PDF

Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable croplands (강원도 고랭지대 배추경작지 배추좀나방(Plutella xylostella L.)의 유기인계 및 카바메이트계 살충제에 대한 저항성 발달)

  • Cho, Jun-Mo;Kim, Kyoung-Ju;Kim, Song-Mun;Han, Dae-Sung;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Diamondback moth (Plutella xylostella L.) recently became a single worst insect which is not controlled effectively by organophosphorus and carbamate insecticides in Kangwon alpine croplands. The objective of this study was to determine if diamondback moth has developed a resistance to organophosphorus and carbamate insecticides. Resistance of diamondback moth, collected at Keichon, Jangpyong Taebaek, Chunchon, and Hongchon, was determined by the concentration required to kill fifty percent of population, $LC_{50}$. Their response of resistance varied to insecticides and locations: Taebaek populations were 35 and 70 times more resistant to chlorpyrifos and fenitrothion, respectively, than susceptible(S) population. Hongchon populations were 94 and 254 times more resistant to chlorpyrifos and fenitrothion, respectively, than S population. In addition, Chunchon populations were 37 and 19 times more resistant to profenofos and benfuracarb, respectively, than S population. However, the field populations did not differ in resistance to diazinon, phenthoate, flupyrazofos, carbofuran, and furathiocarb. This study show that field populations of diamondback moth found in Kangwon alpine vegetable croplands have developed a resistance and/or multiple resistance to some insecticides, implying that farmers are losing organophosphorus and carbamate insecticide options for selective control in vegetable crops.

  • PDF

Ion-Sensitive Field Effect Transistor-Based Multienzyme Sensor for Alternative Detection of Mercury ions, Cyanide, and Pesticide

  • Vyacheslav, Volotovskky;Kim, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.373-377
    • /
    • 2003
  • Various groups of industrial and agricultural pollutants (heavy metal ions, cyanides, and pesticides) can be detected by enzymes. Since heavy metal ions inhibit urease, cyanides inhibit peroxidase, organophosphorus and carbamate pesticides inhibit butyrylcholinesterase, these enzymes were co-immobilized into a bovine serum albumin gel on the surface of an ion-sensitive field effect transistor to create a bioprobe that is sensitive to the compounds mentioned above. The sensitivity of the present sensor towards KCN corresponded to $1\;\mu\textrm{M}$ with 1 min of incubation time. The detection limits for Hg(II) ions and the pesticide carbofuran were 0.1 and $0.5\;\mu\textrm{M}$, respectively, when a 10 min sensor incubation time in contaminated samples was chosen. The total time for determining the concentrations of all species mentioned did not exceed 20 min.

Inhibition of Cholinesterase Activity by Carbamate Insecticides (Carbamate계 살충제에 의한 Cholinesterase활성의 저해)

  • 김정호;박흥재;박병윤
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.391-397
    • /
    • 2002
  • This study was carried out with the inhibition of the cholinesterase activity by carbamate insecticides in the chicken in vivo and in vitro. The optimum pH of cholinesterase was 8.0. The cholinesterase activity used the acetylcholin as substrate in plasma was 24.6 $\mu$mol/min/g protein. After oral administration with 0.32 mg/kg of BPMC as carbamate pesticide, the cholinesterase activity was inhibited to 60% of control after 15min in vivo. Then the recovery of cholinesterase activity followed to 97% of control after 12hr. I$_{50}$, such as concentration required for 50% inhibition of enzyme activity, of phenyl N-methylcarbamate were 329 $\mu\textrm{g}$/$\ell$ of XMC, 214 $\mu\textrm{g}$/$\ell$ of metolcarb, 111 $\mu\textrm{g}$/$\ell$ of BPMC, 107 $\mu\textrm{g}$/$\ell$ of propoxur and 104 $\mu\textrm{g}$/$\ell$ of isoprocarb. I$_{50}$ of aromatic N-methylcarbamate were 280 $\mu\textrm{g}$/$\ell$ of carbaryl and 114 $\mu\textrm{g}$/$\ell$ carbofuran.ran.

Detection for Multiresidue of the Organophosphorus and Carbamate Pesticides by Enzyme-Inhibition Method (효소 저해법을 이용한 유기인계 및 Carbamate계 농약의 다성분 잔류 검출)

  • 김정호
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • This study was carried out with the detection for multiresidue of the organophosphorus pesticides such as malathion, parathion. diazinon, and carbamate pesticide such as carbaryl, by enzyme-inhibition method. The acetylcholinesterase (AChE) and cholinesterase (ChE) activities in chicken brain determined by the Ellman's method were 166.6 and 5.8 $\mu$mol/min/g protein, and in chicken plasma were 23.1 and 8.3 $\mu$mol/min/g protein, respectively. The optimum pH of AChE and ChE was 8.2 and 7.8, respectively. The Km of AChE and ChE was 0.034 and 0.045 mM, respectively. I$\_$50/ for AChE and ChE by some organophosphorus was 55.82 and 99.42 mg/L of malathion, 31.16 and 29.13 mg/L of parathion, and 17.89 and 19.62 mg/L of diazinon, respectively. I$\_$50/ for AChE and ChE by carbaryl of carbamate was 0.10 and 0.05 mg/L, respectively. The 0.07 mg/L of drinking water advisory level for carbaryl could be detected with I$\_$50/ of AChE and ChE. Enzyme-Inhibition (EI) method with AChE and ChE was used the multiresidue method to detect the 1 mg/L of the carbamate pesticides.

Avoidance Behavior of Honey bee, Apis mellifera from Commonly used Fungicides, Acaricides and Insecticides in Apple Orchards

  • Kang, Moonsu;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Avoidance behavior is an important life history strategy to survive hazardous environment. The experiment was conducted to detect the avoidance tendency of the honeybee Apis mellifera against commonly used pesticides in apple production. Choice test given only 50% sucrose solution and pesticide-mixed sucrose solution as food estimated the avoidance in laboratory. Most of the acaricides and fungicides tested were shown avoided. Among insecticides, honeybee showed strong avoidance to cyhexatine, carbosulfan and fenpyroximate but low to diflubenzuron, tebufenpyrad, and acrinathrin. Avoidance behavior to neonicotinoid insecticides showed bifurcated; highly avoided from thiacloprid, acetamiprid while less avoided from imidacloprid, thiamethoxam and dinotefuran. From the field study, abamectin, fenthion, amitraz and acequinocyl showed highly avoided while fungicide of fenarimol, acaricides of acrinathrin and phosphamidon, IGR insecticide of diflubenzuron, neonicotinoid insecticide of imidacloprid, and carbamate insecticide of carbaryl showed less avoidance in the field. These results partly explained high bee poisoning from carbaryl in apple flowering period, and neonicotinoids during season.