• 제목/요약/키워드: capillary tube

검색결과 246건 처리시간 0.02초

마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가 (An assessment of friction factor and viscosity models for predicting the refrigerant characteristics in adiabatic capillary tubes)

  • 손기동;박상구;정지환;김윤수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.47-54
    • /
    • 2008
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses, and flashing, simultaneously. In this paper flow characteristics of adiabatic capillary tubes with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models were simulated. The predicted pressure distribution, mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing the suitable correlations of friction factor and two-phase viscosity model, and two-phase frictional multiplier.

  • PDF

삼각단면 극소히트파이프의 작동특성에 관한 기초 연구 (Fundamental study on performance characteristics of a micro heat pipe with triangular cross section)

  • 문석환;김종오;김철주
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.176-184
    • /
    • 1999
  • Numerical and experimental studies were performed to examine the characteristics of heat and mass transfer processes for a Micro Heat Pipe(MHP) with a triangular cross-section. Solutions on mass flow rate, pressure variation, and radius of meniscus were obtained using the mathematical model developed by Faghri and Khrustalev. To obtain an increase in capillary limitation, a triangular tube with curved walls was designed and fabricated. The measurement by microscope showed that the radius at corners of the tube was ranging between 0.03-0.05mm. Performance test for MHPs using the triangular tube with curved walls proved a substantial increasement in heat transport limitation, with 4.5W and 2.0W in case of using water and ethanol as a working fluid, respectively. In the previous study by Faghri a limitation of 0.5W was reported for a water MHP with a regular triangular tube.

  • PDF

젤라틴 기공유도물질과 유리모세관 장치를 이용한 다공성 PLGA 미세섬유의 제조 (Preparation of Porous PLGA Microfibers Using Gelatin Porogen Based on a Glass Capillary Device)

  • 김철민;김규만
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.63-67
    • /
    • 2016
  • We present a method of fabricating poly (lactic-co-glycolic acid) (PLGA) porous microfibers using a pore template. PLGA microfibers were synthesized using a glass capillary tube in a poly-(dimethylsiloxane) (PDMS) microfluidic chip. Gelatin solution was used as a porous template to prepare pores in microfibers. Two phases of PLGA solutions in different solvents-DMSO (dimethyl sulfoxide) and DCM (dichloromethane)-were used to control the porosity and strength of the porous microfibers. The porosity of the PLGA microfibers differed depending on the ratio of flow rates in the two phases. The porous structure was formed in a spiral shape on the microfiber. The porous structure of the microfiber is expected to improve transfer of oxygen and nutrients, which is important for cell viability in tissue engineering.

원형 모세관과 사각형 단면의 미세채널에서 3차원 수력학적 집속유동 분석 (Analysis of 3-Dimensional Hydrodynamic Focusing in Circular Capillary Tube and Rectangular Microchannel)

  • 윤성희;김경훈;김중경
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.21-26
    • /
    • 2011
  • Hydrodynamic focusing technique to generate focused flow has been used for flow cytometry in microfluidic devices. However, devices with circular capillary tubes made of glass are not suitable for flow visualization or optical signal detection because the rays of light are distorted at the curved interface. We devised a new acrylic chamber assembled with a pulled micropipette and a rectangular microchannel made of glass. This new channel geometry enabled us to visualize the three-dimensional (3D) flow characteristics with confocal imaging technique. We analyzed the 3D hydrodynamic focusing in a circular capillary tube and a rectangular microchannel over a practical range of flow rates, viscosities and pressure drops.

모세관 삽입 룸 에어컨용 액.가스 열교환 배관에 관한 실험적 연구 (An Experimental Study of Liquid.Gas Heat Exchange Pipe Inserted Capillary Tube for Room Air-Conditioner)

  • 김재돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.702-708
    • /
    • 2006
  • This study shows the experimental characteristics of the double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for circulating of a liquid of high temperature, pressure and a gas of low temperature, pressure at the same time. So the functions of pipe and pipe's expansion and heat transfer are presented simultaneously. In the result, the temperature of gas refrigerant at the inlet of compressor increased about $5^{\circ}C$ by the heat transfer with liquid refrigerant in case of the double pipe. And liquid gas refrigerant which the temperature at the inlet of evaporator decreased about $3^{\circ}C$ comparing with the existing type flows into an evaporator COP of the double pipe increased about $7{\sim}10%$ comparing with that of the conventional pipe. And the noise of the double pipe at capillary tube is less than that of the conventional type about 3dB. Consequently. it is convinced the superiority of the double pipe in the heat loss and soundproofing aspect.

Influence of Working Fluids to Heat Transfer Characteristics of Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery

  • Lee, Wook-Hyun;Im, Yong-Bin;Kim, Ju-Won;Kim, Jeung-Hoon;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.27-35
    • /
    • 2001
  • Heat transfer characteristics of a heat exchanged for low temperature waste heat recovery using oscillating capillary tube heat pipe (OCHP) were evaluated against the charging ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working a 2.6mm in outside diameter, 1.44mm in inside diameter with 101m length and 140 turns. Charging ratio of working fluid was 40% and 50%. water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and 9~27 $4kg/m^2s$, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-142b and R-290 and it was proportional to Figure of Merit for thermosyphon. As a result, it was thought that R-22 was the most reasonable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Capacity Modulation of an Inverter Driven Heat Pump with Expansion Devices

  • Lee, Yong-Taek;Kim, Yong-Chan;Park, Youn-Cheol;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.60-68
    • /
    • 2000
  • An experimental study was peformed to investigate characteristics of an inverter driven heat pump system with a variation of compressor frequency and expansion device. The compressor frequency varied from 30Hz to 75Hz, and the performance of the system ap-plying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve (EEV) was measured. The load conditions were altered by varying the temperatures of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test condition was deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimal control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in the inverter heat pump system due to active control of flow area with a change of com-pressor frequency and load conditions.

  • PDF

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

냉동기유가 모세관내의 냉매유량에 미치는 영향 (The Effects of Oil on Refrigerant Flow through Capillary Tubes)

  • 홍기수;황일남;민만기
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.791-801
    • /
    • 2000
  • An experimental study was conducted to analyze the effects of oil on refrigerant flow through adiabatic capillary tubes, and to develop a model for mass flow rates of refrigerant/oil mixture at various capillary tubes and flow conditions. Mass flow rates and the profiles of the pressures and temperatures along the capillary tubes was obtained with the oil concentration of R-22/SUNISO 4GS oil mixture at various test conditions. The flow trends as a function of geometry and flow conditions for pure refrigerant and refrigerant/oil mixture were similar in adiabatic capillary tubes. Mass flow rate of the refrigerant/oil mixture was less than that of pure refrigerant at the same test conditions.

  • PDF

Investigation of the Performance of Spectral Domain Optical Doppler Tomography with High-speed Line Scanning CMOS Camera and Its Application to the Blood Flow Measurement in a Micro-tube

  • Park, Cheol Woo;Lee, Changho;Lim, SooHee;Ni, Aleksey;An, Jin Hyo;Lee, Ho;Bae, Jae Sung;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • 제16권2호
    • /
    • pp.174-180
    • /
    • 2012
  • In this study, the feasibility of spectral domain optical Doppler tomography for measuring blood flow characteristics in a micro-tube was demonstrated through several experiments. The use of an SD-ODT system in blood flow measurement can provide high resolution images (5 microns resolution). We prepared three capillary tubes to reveal the effect of different concentrations of hematocrit ratio (HR). One tube serves as the control. The two other tubes contained different concentrations of HR (5%, 25%). Three different capillary tube inlet flow velocities were tested in the present study. The Reynolds number (Re) which is based on the capillary tube inner diameter ranges from Re=6 to 48. We calculated a Doppler shift of the power spectrum of the temporal interference fringes with Kasai autocorrelation function to achieve the velocity profile of the flow. As a result, SD-ODT systems could not detect the cell depletion layer in the present study due to the limitation of spatial resolution. Nevertheless, these systems were proven to be capable of observing the RBCs of blood.