• Title/Summary/Keyword: capillary design

Search Result 130, Processing Time 0.033 seconds

Measurement of Viscosity and Numerical Analysis of High Speed Injection Molding for Thin-Walled LGP (박형 도광판의 고속사출성형을 위한 수지 점도 측정 및 수치해석)

  • Jung, T.S.;Kim, J.S.;Ha, S.J.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • The light guide plate has become the major component for the backlight module in general information technology products (e.g. mobile phones, monitors, etc.). High speed injection molding has been adopted for thin walled LGP giving advantages such as weight, shape, size, and reduction in production costs. In the current study, the rheological characteristics of high liquidity plastic resin PC(HL8000) were measured using a capillary rheometer to improve the reliability of the numerical analysis for high speed injection molding. With the measured viscosity and PVT of PC(HL8000), numerical analysis of injection molding was conducted using the simulation software(Moldflow). Filling time and deflection were predicted and compared with those of traditional PC resins(H3000, H4000). The results show that PC(HL8000) has significantly different rheological characteristics during high speed injection molding. Hence proper properties of the resin should be used to improve the accuracy of numerical predictions.

Characteristics of Shear Wave Velocity as Stress-Induced and Inherent Anisoptopies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Lee, Jong-Sub;Cho, Tae-Hyeon;Lee, Jeong-Hark;Kim, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.137-146
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomenons are negligible. However, the terms of effective stresses are divided to the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by parameters and exponents that are experimentally determined. The exponents are controlled contact effects of particulate materials(sizes, shapes, and structures of particles) and the parameters are changed contact behaviors between particles, material properties of particles, and type of packing(i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies through bender elements. Results show the shear wave velocities depends on the stress-induced anisotropy for round particles. Furthermore the shear wave velocity is dependent on particle alignment under the constant effective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully calculated and used for the design and construction of geotechnical structures.

  • PDF

Analysis of Correlativity with Blood Pressure and Measurement of Brain Blood Pressure(BBP) (뇌혈압 측정과 상완 혈압의 상관성 분석)

  • Ko, Su-Bok;Lee, Yong-Heum;Kim, Sung-Gon;Jeong, Dong-Myong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.180-183
    • /
    • 2001
  • In modem city life, the citizen get insufficient exercise and has high levels of stress. Increased Stress causes such minor things as tiredness, disease and mental fatigue, and increase brain blood pressure too. In this paper trying to design the multi-functional blood pressure monitor with airo-dynamic brain hemokinesis improvement function. So this system have developed for the improvement of flows in the capillary blood vessel of head and limbs. Also This system is able to measure brain blood pressure(BBP) which need diagnosis circulation state of brain blood. So, we extracted correlativity of blood pressure(BP) and BBP through clinical experiment. We confirmed that compare factor of BP with BBP is more useful factors for diagnosis state of brain hemokinesis.

  • PDF

Generation of sheath-free particle beam: application to micro-flow cytometry (외피유체 없이 입자 빔의 발생: 유세포 분류기 응용)

  • Kim, Young-Won;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.581-584
    • /
    • 2008
  • A generation of a particle beam is the key technique in a flow cytometry that measures the fluorescence and light scattering of individual cell and other particulate or molecular analytes in biomedical research. Recent methods performing this function require a laborious and time-consuming assembly. In the present work, we propose a novel device for the generation of an axisymmetrical focusing beam of microparticles (3-D focusing) in a single capillary without sheath flows. This work uses the concept that the particles migrate toward the centerline of the channel when they lag behind the parabolic velocity profile. Particle focusing of spherical particles was successfully made with a beam diameter of about 10 ${\mu}$m. Proposed device provides crucial solutions for simple and innovative 3-D particle focusing method for the applications to the MEMS-based micro-flow cytometry. We believe that this device can be utilized in a wide variety of applications, such as biomedical/ biochemical engineering.

  • PDF

Fabrication of Photonic Crystal Fiber using a Capillary Layer Method (모세관 적층 방법에 의한 광자결정 광섬유의 제작)

  • Cho, Hyung-Su;Chung, Hae-Yang;Kim, Gil-Hwan;Koh, Dong-Yean;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • Photonic crystal fibers(PCFs) with silica cores within an away of air holes have unique properties. Broad band single-mode and the octave-spanning supercontinuum generation, impossible to achieve in classical fibers, can be realized. The design of PCFs is very flexible. There are two parameters to manipulate: air hole diameter, and lattice pitch. We introduced a fabrication process for control of the parameters to obtain endlessly single mode PCF, which is single mode in a large wavelength range, and highly nonlinear PCF. The numerical analysis and experiments are included.

Detection of electromagnetic interference shielding effect of Hanji mixed with carbon nanotubes using nuclear magnetic resonance techniques

  • Byun, Young Seok;Chae, Shin Ae;Park, Geun Yeong;Lee, Haeseong;Han, Oc Hee
    • Carbon letters
    • /
    • v.27
    • /
    • pp.90-97
    • /
    • 2018
  • Electromagnetic interference (EMI) shielding is an important issue in modern daily life due to the increasing prevalence of electronic devices and their compact design. This study estimated EMI-shielding effect (EMI-SE) of small ($8-14{\times}17mm$) Hanji (Korean traditional paper) doped with carbon nanotubes (CNTs) and compared to Hanji without CNT using $^2H$ (92.1 MHz) and $^{23}Na$ (158.7 MHz) nuclear magnetic resonance (NMR) peak area data obtained from 1 M NaCl in $D_2O$ samples in capillary tubes that were wrapped in the Hanji samples. The simpler method of using the variation of reflected power and tuning frequency by inserting the sample into an NMR coil was also tested at 242.9, 158.7, and 92.1 MHz. Overall, EMI shielding was relatively more effective at the higher frequencies. Our results validated that NMR methods to be useful to evaluate EMI-SE, particularly for small, flexible shielding materials, and demonstrated that EMI shielding by absorption is dominant in Hanji mixed with CNT.

Effect of Korea Red Ginseng on the Symptoms and Hemodynamics in Healthy Elders

  • Jin En-Yuan;Li Ya-Jun;Yang Lian-Xing;Jin Ming;Wei Yu-Lin;Nam Ki Yeul
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.27-34
    • /
    • 2002
  • Clinical study on hemodynamics of healthy elders before and after tread mill. Using doubleblind, placebo-controlled study design. Seventy-five 50-70 years old volunteers without organic disease were divided into two groups, Ginseng group and control group. Each subject was received 3 g Korea Red Ginseng (KRG) capsules or placebo per day for 4 weeks. Before and after administration 4 weeks, the symptoms were asked and hemodynamics parameter such as pump function, systolic function, preload and afterload were recorded before and after tread mill 1,5, 10 minutes by the method of thoracic impedance cardiograph. The result showed that Ginseng could improve quality of life, had obvious effect of increasing PEP (pre-ejection period), PEP/LVET (pre-ejection period/left ventricular ejection period), PCWP (wedged pressure pulmonary capillary). The change rate of HR (heart rate), SV (stroke volume) in KRG group were much lowered, while EF (ejection fraction), LVET (left ventricular ejection period), LVEDP (left ventricular end diastolic pressure) was recovered much quickly. The circulation showed Ginseng could improve the quality of life though its promoting circulation function which are increasing both the systolic function and the preload.

  • PDF

Controlling interlayer spacing of GO membranes via the insertion of GN for high separation performance

  • Xuan Liu;Zhu Zhou;Hengzhang Dai;Kuang Ma;Yafei Zhang;Bin Li
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Graphene oxide (GO) membranes have attracted extensive attention in water treatment and related fields. However, GO films are unstable and have low permeability, which have hindered their further development. In this paper, a simple and effective method was used in which GO and single-layer graphene (GN) were mixed, and the layer spacing was effectively controlled by accurately controlling the ratio of GO to GN. GO-GN composite membranes have excellent stability, salt rejection (95.4%), and water flux (26 L m-2 h-1 bar-1). This unique design structure can be used for precise and effective regulation of the layer spacing in GO, improving the rejection rate, and increasing water flux via the enhancement of low-friction capillary action. The rational development and use of this unique composite membrane provides a reference for the water treatment field.

Hemodynamic Evaluation of Acute Mitral Valve Insufficiency Model induced by Chordae Tendinae Rupture in Normal Dogs (개에서 건삭파열로 유발한 급성 이첨판 폐쇄부전 모델의 혈류역학적 평가)

  • Kim, Sehoon;Kim, Nam-Soo;Lee, Ki-Chang;Kim, Jong Min;Kim, Min-Su
    • Journal of Veterinary Clinics
    • /
    • v.31 no.5
    • /
    • pp.367-370
    • /
    • 2014
  • The study was to observe hemodynamic alterations of cardiac function to design a model of canine mitral valve insufficiency (MVI) based on chordae tendinae rupture (CTR). Ten healthy beagles with normal heart function were used in this study. To measure hemodynamics, the patient monitor was equipped for invasive blood pressure and a Swan-Ganz catheter. Hemodynamic alterations were checked promptly during CTR procedures. MVI model was made by transection of the chordae tendinae with small arthroscopy hook knife through $5^{th}$ intercostal open chest. Color Doppler at the level of the mitral valve showed high-velocity regurgitant flow immediately after CTR at intraoperative echocardiography. In hemodynamic measurements, pulmonary capillary wedge pressure (PCWP) was significantly increased, while mean arterial pressure (MAP), venous pressure (VP), pulmonary arterial pressure (PAP), cardiac output (CO) and cardiac index (CI) were significantly decreased after CTR. It was known that the left atrium was overloaded by regurgitant volume from the left ventricle. In conclusion, the MVI model induced by CTR technique in this study should be used as suitable one for the effective research of canine mitral valve disease. Further study should be needed to measure the chronic alternation of mitral valve in the model.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF