• Title/Summary/Keyword: capacity benefit margin

Search Result 5, Processing Time 0.021 seconds

Probabilistic Approach to Time Varying Available Transfer Capability Calculation (확률론적 기법을 이용한 시변 가용송전용량 결정)

  • Shin, Dong-Jun;Kim, Kyu-Ho;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.533-539
    • /
    • 2005
  • According to NERC definition, Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity. To calculate Available Transfer Capability, accurate and defensible Total Transfer Capability, Capacity Benefit Margin and Transmission Reliability Margin should be calculated in advance. This paper proposes a method to quantify time varying Available Transfer Capability based on probabilistic approach. The uncertainties of power system and market are considered as complex random variables. Total Transfer Capability is determined by optimization technique such as SQP(Sequential Quadratic Programming). Transmission Reliability Margin with the desired probabilistic margin is calculated based on Probabilistic Load Flow analysis, and Capacity Benefit Margin is evaluated using LOLE of the system. Suggested Available Transfer Capability quantification method is verified using IEEE RTS with 72 bus. The proposed method shows efficiency and flexibility for the quantification of Available Transfer Capability.

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

A Study on the Assessment of Reasonable Reserve Margin in Basic Plan of Electricity Supply and Demand (전력수급기본계획의 적정 설비예비율 산정 개선방안)

  • Kim, C.S.;Rhee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.418-419
    • /
    • 2006
  • After electricity power industry restructuring, "Long term power development plan", setting up by government, is replaced by "Basic plan of electricity supply and demand". In this basic plan, one of the most important factors is assessment of appropriate capacity margin. The benefit of GENCO is decided by the market price, and the price is largely affected by the level of reserve margin. As a consequence, appropriate reserve margin is determined by market power. However, Cost Based Pool(CBP) is a limited competitive market, and government policy for supply and demand is very important factor or reserve margin determination. This paper points out issues about existing reserve margin assessment method which is used in basic plan and suggests improved assessment method. In the case study, capacity margin is calculated by proposed assessment method and result shows the advantages of suggested method.

  • PDF

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

Perfecting the System for Assessment of the Financial Potential of a Transport Enterprise

  • Nesterov, Evgeny Aleksandrovich;Borisov, Andrei Viktorovich;Shadskaja, Irina Gennadievna;Shelygov, Aleksandr Vladimirovich;Sharonin, Pavel Nikolaevich;Frolov, Alexander Lvovich;Lebedeva, Olga Yevgenievna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.109-116
    • /
    • 2022
  • The article is devoted to perfecting the system of management of the financial potential of transport enterprises. It is established that transport as an integral part of the state economy has to organically enter the market economy and provide sustainable transport services to national economy enterprises regardless of ownership, as well as ensure passenger transportation. It is also determined that in the conditions of market relations, transport highways must perform their functions with sufficient economic benefit to keep their material and technical resources in good order, conduct an investment policy with extensive use of scientific and technological progress, as well as a social policy guaranteeing the conditions for employees' motivated work. The study reveals an association between the financial and strategic goals of transport enterprises and the minimization of their economic risks, the prevention of bankruptcy and profit margin shortfalls. It is found that transport enterprises need to strive for the overall improvement of their financial potential through increasing the components of financial potential and assessing the impact of risk factors on them: the capacity of fixed assets, the capacity of financial resources, the capacity of services, and the capacity of credit opportunities. These are the elements of transport enterprises' financial potential that ensure its desired level. It is demonstrated that of critical importance in managing the financial potential of a transport enterprise is the role of financial resources, as a subject cannot reach the desired strategic goals without them.