• Title/Summary/Keyword: capacitor breaking

Search Result 5, Processing Time 0.023 seconds

Printed Organic One-Time Programmable ROM Array Using Anti-fuse Capacitor

  • Yang, Byung-Do;Oh, Jae-Mun;Kang, Hyeong-Ju;Jung, Soon-Won;Yang, Yong Suk;You, In-Kyu
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.594-602
    • /
    • 2013
  • This paper proposes printed organic one-time programmable read-only memory (PROM). The organic PROM cell consists of a capacitor and an organic p-type metal-oxide semiconductor (PMOS) transistor. Initially, all organic PROM cells with unbroken capacitors store "0." Some organic PROM cells are programmed to "1" by electrically breaking each capacitor with a high voltage. After the capacitor breaking, the current flowing through the PROM cell significantly increases. The memory data is read out by sensing the current in the PROM cell. 16-bit organic PROM cell arrays are fabricated with the printed organic PMOS transistor and capacitor process. The organic PROM cells are programmed with -50 V, and they are read out with -20 V. The area of the 16-bit organic PROM array is 70.6 $mm^2$.

Development and Revenue Service of Propulsion System Using IPM (IPM 소자를 사용한 추진제어장치 개발 및 상용화)

  • LEE K.K.;KIM D.M.;KWON I.D.
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.671-675
    • /
    • 2005
  • In this paper, Development of propulsion system using IPM(Intelligent Power Module) for DC electric vehicle is proposed. Designed propulsion system is comprised of inverter stack which includes 6 IPM, BCH(Breaking Chopper) unit, FC(Filter Capacitor), Control unit. IPM can compose propulsion system simple by including gate drive circuit and protection circuit. Inverter stack is designed as a simple structure using IPM and non clamp capacitor. VVVF Inverter control is used the vector control strategy at low velocity region and slip frequency-control strategy at high velocity region. Designed propulsion system proves the performance through test and revenue service.

  • PDF

Application of Pulsed Power with the High Voltage & current for Rock Fragmentation (고전압.대전류폴스파워를 이용한 암반발파 모의 기술개발)

  • Seo, Kil-Soo;Kim, Young-Bae;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1592-1595
    • /
    • 1998
  • The rock fragmentation system with a capacitor bank, switching device, cable and blasting electrode are described. Utilization of the chemical energy from the electrolyte and the pseudospark with a large current capacity suggested the commercialization possibility of the rock fragmentation system. The vibration and noise level of the pulsed blasting is acceptable in the most ground breaking. And also the electromagnetic force produced by the inductor is introduced for the rock fragmentation.

  • PDF

Optimized Capacitor Bank Design for Capacitive Current Test for High Power Laboratory and Analysis with EMTP Simulation (대전력 시험소의 부하시험용 콘덴서 뱅크의 최적 설계 및 EMTP 해석)

  • Ahn, S.H.;Lee, H.C.;Ham, G.H.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1220-1223
    • /
    • 1998
  • High Power Laboratory is the facility for building to simulate the various phenomena generated from electric systems of the real world and to test making and breaking capability, switching capability and durability of circuit breaker, switchgear and other electric utilities, moreover, load equipments which contain capacitor bank is installed for studying the diverse effects originated from the constituent of load through entire systems or receiving end. Such factors, abnormal voltage or current, can be serious in electrical systems, especially, in the case caused by capacitive components such as overvoltage or inrushcurrent, the problems may be more fatal to the systems. In this paper, the optimal design of capacitor bank which will be equipped in High Power Laboratory, which is for simulating as closely as the practical phenomena resulted from the capacitive currents, and the verification aided by computer simulations are presented. For this, analysis of the circuit characteristics according to the standards which can be criteria of the capacitive current tests and the test circuit configuration in accordance with the analysis are proposed in prelude. In the body of the paper the optimal design of capacitor bank has been obtained on the basis of all conditions mentioned above and the test circuit configuration with LGIS test requirements. furthermore, analysis and verification for the design are derived by EMTP. finally, evaluation for the capacitor bank design and further study plan are concluded.

  • PDF

The discussion on the Plasma blasting Experimentation (Plasma파암 실험토론회)

  • 박철화
    • Explosives and Blasting
    • /
    • v.16 no.3
    • /
    • pp.35-48
    • /
    • 1998
  • An overview of the plasma rock fragmentation system, the first commercial application of plasma blasting, is presented. Plasma blasting is based on the fast delivery of stored electrical energy to fracture the rock. The capacitor bank, switching device, cable and blasting electrode employed in the system are described. Utilization of the chemical energy delivered from the electrolyte and the development of a large charge transfer switch using pseudospark enabled the commerciailzaion. The vibration and noise level of the blasting is acceptable in the most ground breaking.

  • PDF