• Title/Summary/Keyword: capacitive sensor

Search Result 329, Processing Time 0.025 seconds

Development of On-machine Measurement System utilizing a Capacitive-type Sensor (정전용량형 센서를 이용한 기상계측시스템의 개발)

  • 김건희;박순섭;박원규;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.391-395
    • /
    • 2002
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on the single point diamond turning machine(SPDTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of On-machine Measurement System in this investigation is capable of providing a repeatability of 20 nanometers with a $\pm$20 uncertainty of 300 nanometers.

  • PDF

Development of Cylindrical Capacitive-Conductive Sensor to Evaluate Insulating Degradation for FCEV Stack (차량용 연료전지 스택의 절연열화 진단을 위한 원통형 정전용량-전기전도도 센서개발)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Cui, Jiang-Yue;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Consequently it was developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid.

Arrayed Tip based Pattern Lithography with Built-in Capacitive Proximal Leveling Sensor (내장형 정전용량 근접 센서를 이용한 다중 팁 기반 패턴 인쇄)

  • Han, Yoonsoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.239-245
    • /
    • 2019
  • To increase the throughput of tip-based nanolithography (TBN), one approach is to use a large array of such tips working in parallel. It is important to maintain co-planarity between the tip array and the writing surface. A slight misalignment can cause large discrepancies of contact force and feature sizes. We report a capacitive proximity sensor built-in with the TBN array for leveling an arrayed polymer pen array. The device allows alignment between an array of writing tips and the writing substrate without contact and contamination. The angular sensitivity of the sensor is $0.05^{\circ}$ for an array with maximum tip-to-tip separation of 100 mm.

Study on User Interface for a Capacitive-Sensor Based Smart Device

  • Jung, Sun-IL;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.47-52
    • /
    • 2019
  • In this paper, we designed HW / SW interfaces for processing the signals of capacitive sensors like Electric Potential Sensor (EPS) to detect the surrounding electric field disturbance as feature signals in motion recognition systems. We implemented a smart light control system with those interfaces. In the system, the on/off switch and brightness adjustment are controlled by hand gestures using the designed and fabricated interface circuits. PWM (Pulse Width Modulation) signals of the controller with a driver IC are used to drive the LED and to control the brightness and on/off operation. Using the hand-gesture signals obtained through EPS sensors and the interface HW/SW, we can not only construct a gesture instructing system but also accomplish the faster recognition speed by developing dedicated interface hardware including control circuitry. Finally, using the proposed hand-gesture recognition and signal processing methods, the light control module was also designed and implemented. The experimental result shows that the smart light control system can control the LED module properly by accurate motion detection and gesture classification.

Fabrication of Relative-type Capacitive Pressure Sensor (상대압 용량성 압력센서의 제작)

  • 서희돈;임근배;최세곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.82-88
    • /
    • 1993
  • This paper describes fabrication of relative type capacitive pressure sensor to be in great demand for many fields. The fabricated sensor consists of two parts` a sensing diaphragm and a pyrox glass cover. The sensor size is 4.5${\times}3.4mm$^{2})$ and 400$\mu$m thick. To improve the nonlinearity, this sensor is designed a rectangular silicon diaphragm with a center boss structure, and in order to improve the temperature characteristics of the sensor in a packaging process, the sensing element is mounted on the pyrex glass support. Some suggestions toward the design and fabrication of improved sensors have been presented. The zero pressure capacitance, Co of sensor is 26.57pF, and the change of capacitance, ${\Delta}$C is 1.55pF from 0Kgf/Cm$^{2}$ to 1Kgf/Cm$^{2}$ at room temperature. The nonlinearity of the sensor output with center boss diaphragm is 1.29%F.S., and thermal zero shift and thermal sensitivity shift is less than 1.43%F.S./$^{\circ}C$and 0.14% F.S./$^{\circ}C$, respectively.

  • PDF

A study on a capacitive displacement sensor for the ultraprecision measurement (초정밀 측정용 정전용량 변위센서에 관한 연구)

  • Ahn, Hyeongjoon;Chang, Inbae;Han, Dongchul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.110-117
    • /
    • 1997
  • This paper discusses numerically and experimenally several design parameters for the plate- type capacitive displacement sensor. The influenences of shape of this sensor on the sensitivity are numerically analyzed with the charge density method. Using many test sensor plates of different shape for verifing the validity of this method can not guarantee the repetibility of experiments. Therefore we made specially the test sensor plate so that experiments of effects of shape of this sensor on sensitivity can be done with only that plate. Results from these experiments agree well with those from numerical analysis.

  • PDF

Circuit Design of Fingerprint Authentication for Smart Card Application (스마트카드의 인증을 위한 지문인식 회로 설계)

  • 정승민;김정태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • This paper propose an advanced circuit for fingerprint sensor signal processing. We increased the voltage between ridge and valley by modifying the parasitic capacitance eliminating circuit of sensor plate. The analog to comparator was designed for comparing the sensor signal voltage with the reference signal voltage. We also propose an exective isolation strategy for removing noise and signal coupling of each sensor pixel. The 128$\times$144 pixel fingerprint sensor circuit was designed and simulated, and the layout was performed.

  • PDF

A Robust Resistive Fingerprint Sensor

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • A novel sensing scheme using resistive characteristics of the finger is proposed. ESD problem is more harmful than a capacitive fingerprint sensor in a resistive fingerprint sensor, because the sensor plate is directly connected to the sensing cell. The proposed circuit is more robust than conventional circuit for ESD. The sensor plate and sensing cell are isolated by capacitor. The pixel level simple detection circuit is fully digital operation unlike that of the capacitive sensing cell. The sensor circuit blocks are designed and simulated in a standard CMOS $0.35{\mu}m$ process. The proposed circuit is more stable and effective than a typical circuit.

Development of Sensor for Magnetically Levitated High Speed Spindle System (자기 부상 고속 주축계의 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.987-992
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle systems. The main goal of our research is to develop technology for producing high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is being developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. This paper describes the selection process of the sensor types and the design of the driving circuit. We also report the experimental results that characterize the static and dynamic performances of the inductive sensor.

  • PDF

Design of Thermal Displacement Compensation Sensor for High Reliability Machine Tools (고신뢰 머시닝센터를 위한 열변위 보상 센서 설계기술)

  • Kim, Il-Hae;Jang, Dong-Young;Park, Jeong-Hoon;Park, Sung-Wook;Shim, Poong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.886-893
    • /
    • 2011
  • To increase the reliability and positional accuracy of a machine tool, a novel capacitive displacement sensor having a cylindrical shape is presented to measure the axial displacement of a machine tool spindle. Characteristics of the sensor were analyzed by numerical simulation. The sensor was built into a specific machine tool spindle and its performance was experimentally investigated. The accuracy of a thermal error compensation system of a machine tool can be enhanced greatly using proposed sensor.