Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.5.239

Arrayed Tip based Pattern Lithography with Built-in Capacitive Proximal Leveling Sensor  

Han, Yoonsoo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology (Icheon))
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.5, 2019 , pp. 239-245 More about this Journal
Abstract
To increase the throughput of tip-based nanolithography (TBN), one approach is to use a large array of such tips working in parallel. It is important to maintain co-planarity between the tip array and the writing surface. A slight misalignment can cause large discrepancies of contact force and feature sizes. We report a capacitive proximity sensor built-in with the TBN array for leveling an arrayed polymer pen array. The device allows alignment between an array of writing tips and the writing substrate without contact and contamination. The angular sensitivity of the sensor is $0.05^{\circ}$ for an array with maximum tip-to-tip separation of 100 mm.
Keywords
capacitive; leveling; lithography; arrayed tip; polymer pen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49 (1982) 57-61.   DOI
2 G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope. Phys. Rev. Lett., 56 (1986) 930-933.   DOI
3 D. M. Eigler, and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope. Nature, 344 (1990) 524-526.   DOI
4 P. S. Weiss, and D. M. Eigler, Adsorption and accomodation of Xe on Pt{111}. Phys. Rev. Lett., 69 (1992) 2240-2243.   DOI
5 S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Technol., 14 (1996) 2456-2461.   DOI
6 R. Maoz, S. R. Cohen, and J. Sagiv, Nanoelectrochemical patterning of monolayer surfaces: toward spatially defined self-assembly of nanostructures. Adv. Mater., 11 (1999) 55-61.   DOI
7 G. Y. Liu, S. Xu, and Y. Qian, Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res., 33 (2000) 457-466   DOI
8 R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, "Dip-Pen" Nanolithography. Science, 283 (1999) 661-663.   DOI
9 S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, J. Zesch, A. Atalar, and C. F. Quate, Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett., 72 (1998) 2340-2342.   DOI
10 X. Wang, and C. Liu, Multifunctional probe array for nano patterning and imaging. Nano letters, 5 (2005) 1867-1872.   DOI
11 K. Salaita, S. W. Lee, X. Wang, L. Huang, T. M. Dellinger, C. Liu, and C. A. Mirkin, Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small, 1 (2005) 940-945.   DOI
12 K. Salaita, Y. Wang, J. Fragala, and C. A. Mirkin, Massively Parallel Dip-Pen Nanolithography with 55000-Pen Two-Dimensional Arrays. Angew. Chem. Int. Ed, 45 (2006) 7220-7223.   DOI
13 C. A. Mirkin, The power of the pen: development of massively parallel dip-pen nanolithography. ACS Nano, 1 (2007) 79-83.   DOI
14 C. Liu and R. Gamble, Mass-producible monolithic silicon probes for scanning probe microscopes. Sensors and Actuators A: Physical, 71(1998) 233-237.   DOI
15 X. Wang, D. A. Bullen, J. Zou, and C. Liu, Thermally actuated probe array for parallel dippen nanolithgraphy. J. Vac. Sci. Technol., 22 (2004) 2563-2567.   DOI
16 F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, Polymer Pen Lithography. Science, 321 (2008) 1658-1660.   DOI
17 Z. Zheng, W.L. Daniel, L. R. Giam, F. Huo, A.J. Senesi, G. Zheng, and C.A. Mirkin, Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. Int. Ed., 48 (2009) 7626-7629.   DOI
18 X. Liao, A. B. Braunschweig, and C.A. Mirkin, "Force-feedback" leveling of massively parallel arrays in polymer pen lithography. Small, 10 (2010) 1335-1340.
19 K. S. Salaita, S. W. Lee, D. S. Ginger, and C. A. Mirkin, DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. Nano letters, 6 (2006) 2493-2498   DOI
20 J. W. Jang, R. Sanedrin, A. J. Senesi, and Z. Zheng, Generation of metal photomasks by dippen nanolithography. Small, 5 (2009) 1850-1853.   DOI
21 J. Graham, M. Kryzeminski, and Z. Popovic, Capacitance based scanner for thickness mapping of thin dielectric films. Revew of scientific instruments, 71 (2000) 2219-2223.   DOI
22 X. Wang, K. S. Ryu, D. A. Bullen, J. Zou, H. Zhang, C. A. Mirkin, and C. Liu, Scanning probe contact printing. Langmuir, 19 (2003) 8951-8956   DOI