• Title/Summary/Keyword: capacitive electrode

Search Result 168, Processing Time 0.024 seconds

Non-Contacting Capacitive Sensor with 4-Electrodes for Measuring Small Displacement (미소변위 측정용 비접촉식 4-전극형 전기용량 센서)

  • Lee, Rae-Duk;Kim, Han-Jun;Park, Se-Il;Semyonov, Yu. P.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1998
  • Non-contacting capacitive sensors, based on principle of the cross capacitor, for measuring small displacement less than $1.95{\pm}0.5\;mm$ have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors with 2-electrodes and 3-electrodes, the new sensor is consisted of 4-electrodes which are formed two electrode(high, low) and 2 guard electrodes on a sapphire plate with diameter 17 mm and thickness 0.7 mm, and are symmetrically situated with a constant gap of 0.2 mm between the electrodes. This sensor can be used for measuring both metallic and non-metallic target without ground connection, and is evaluated to the correlation coefficient of 0.9987 for the range of $1.95{\pm}0.5\;mm$ and that of 0.9995 for $1.95{\pm}0.25\;mm$ range.

  • PDF

Preparation of Heterogeneous Ion Exchange Membranes and Evaluation of Desalination Performance in Capacitive Deionization (불균질 이온교환막의 제조와 축전식 탈염에서의 탈염 성능 평가)

  • Choi, Jae-Hwan;Lee, Joo-Bong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2016
  • We prepared heterogeneous ion exchange membranes (hetero-IEMs) for the application of membrane capacitive deionization (MCDI). Hetero-IEMs were fabricated by compressing the mixture of ion exchange resin powders and liner low density polyethylene (LLDPE). Characterization and MCDI desalination experiments were carried for the fabricated membranes. Electrical resistance of membrane decreased and water content increased with increasing the resin content in the hetero-IEMs. However, transport number indicating permselectivity of membrane was similar with that of commercial homogenesous ion exchange membrane. The results of MCDI desalination experiments showed that the adsorption amount for hetero-IEM was about 90% of that of homogeneous membrane due to the high electrical resistance of hetero-IEM. Although desalination performance of hetero-IEM decreased compared with homogeneous membrane, it was thought to be applicable to MCDI because of simple preparation and low price.

Characteristics of Capacitive Deionization Process using Carbon Aerogel Composite Electrodes (탄소에어로젤 복합전극의 전기용량적 탈이온 공정 특성)

  • Lee, Gi-Taek;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2005
  • Porous-composite electrodes have been developed using silica gel, which reduce carbon aerogel usage with high cost. Silica gel powder was added to the carbon aerogel to simplify the manufacturing procedure and to increase the wet-ability, the mechanical strength and the CDI efficiency. Porous composite electrodes composed of carbon aerogel and silica gel powder were prepared by paste rolling method. Carbon aerosol composite electrodes with $10\times10cm^2$ are placed face to face between spacers, and assembled the four-stage series cells for CDI process. Each stage is composed of 45 cells. Four-stage series cells (flow through cells) for CDI process are put in continuous-system reactor containing 1,000ml-NaCl solution bath of 1,000 ppm. The four-stage series cells with carbon aerogel electrodes are charged at 1.2V and are discharged at 0.001V, and then read the current. Conclusively, removal efficiencies of ions using the four-stage series cells composed of carbon aerogel composite electrodes show good removal efficiency of $99\%$ respectively.

Development of Capacitive Deionization with Calcium Alginate Based Cation Exchange Membrane for Hardness Control (칼슘알지네이트 이온교환막을 활용한 경도 제거용 축전식 탈염 기술 개발)

  • Yoon, Hongsik;Min, Taijin;Lee, Gunhee;Park, Inyong;Han, Bangwoo;Kang, Bo Sik;Ryu, Kyungha;Lee, Jiho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.563-571
    • /
    • 2021
  • In this study, calcium alginate based cation exchange membrane was prepared and used to develop membrane capacitive deionization (MCDI) system for effective hardness control. As a major result, the MCDI with Ca-alginate membrane showed 27% better deionization capacity than the MCDI with a commercial cation exchange membrane. This superior improvement in the deionization capacity was expected to be due to the high ratio of transport number/electrical resistance (Sc/Rratio) of Ca-alginate membrane. In addition, the MCDI with Ca-alginate membrane showed better deionization performance than the MCDI with Ca-alginate coating. This was because the space between the electrode and the Ca-alginate membrane was utilized for ion adsorption. The preliminary results indicated that the MCDI with Ca-alginate membrane can be a viable technique for the hardness control.

A Study on the Discharge Characteristics of an Ac PDP with the Variation of Scan Electrode Driver (PDP 스캔 전극 구동방식에 따른 방전 특성의 변화에 관한 연구)

  • Kim, Joong-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.13-18
    • /
    • 2005
  • The variation of discharge characteristics of an ac PDP was observed with the charge of scan electrode driving circuit. Conventional scan electrode driving circuit provides two switches per one scan line, and the suggested one can be constituted by one switch per one scan line with the consideration of capacitive load characteristic of an ac PDP. To verify the workability of the suggested scheme, the performances of the ac PDP was investigated. The dynamic voltage margin was slightly decreased with the adoption of the suggested scheme, which is estimated to result from the misfiring of unselected discharge cells due to the deformation of voltage level of the neighboring scan electrode. In the observation of the delay characteristics of addressing discharge, the performances of the conventional circuit and the suggested one are assumed to be equivalent.

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

Flexible and Transparent CuO/Cu/CuO Electrodes Grown on Flexible PET Substrate by Continuous Roll-to-roll Sputtering for Touch Screen Panels Cells

  • Kim, Dong-Ju;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.217.2-217.2
    • /
    • 2014
  • We prepared a flexible and transparent CuO/Cu/CuO multilayer electrodes on a polyethylene terephthalate (PET) substrate using a specially designed roll-to-roll sputtering system at room temperature for GFF-type touch screen panels (TSPs). By the continuous roll-to-roll sputtering of the CuO and Cu layer, we fabricated a flexible CuO(150nm)/Cu(150nm)/CuO(150nm) multilayer electrodes with a sheet resistance of $0.289{\Omega}/square$, resistivity of $5.991{\times}10^{-23}{\Omega}-cm$, at the optimized condition without breaking the vacuum. To investigate the feasibility of the CuO/Cu/CuO multilayer as a transparent electrode for GFF-type TSPs, we fabricated simple GFF-type TSPs using the diamond patterned CuO/Cu/CuO electrode on PET substrate as function of mesh line width. Using diamond patterned CuO/Cu/CuO electrode of mesh line $5{\mu}m$ with sheet resistance of 38 Ohm/square, optical transmittance of 90% at 550 nm and an average transmittance of 89% at wavelength range from 380 to 780 nm, we successfully demonstrated GFF-type touch panel screens (TPSs). The successful operation of GFF-type TPSs with CuO/Cu/CuO multilayer electrodes indicates that the CuO/Cu/CuO multilayer is a promising transparent electrode for large-area capacitive-type TPSs due to its low sheet resistance and high transparency.

  • PDF

Frequency-Dependant Grounding Impedances According to the Length of Grounding Electrode and the Joint Position of Ground Conductors (접지전극의 길이 및 접지도선의 접속위치에 따른 접지임피던스의 주파수의존성)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.37-43
    • /
    • 2010
  • When lightning surges with wide frequency spectrum and power converting devices are considered, it is desirable to evaluate grounding system performance by grounding impedances. This paper presents the measured results for frequency-dependent grounding impedance for the vertical grounding electrode and counterpoise on a scale of full size. Grounding impedances of vertical grounding electrodes and counterpoises give capacitive or inductive behaviors according to the length of grounding electrodes and soil resistivity. It is inefficient to extend the length of the grounding electrode in order to decrease the ground resistance, and when designing the grounding system, the consideration of the grounding impedance should be desirable. In order to reduce the grounding impedance of counterpoise, the grounding conductors are jointed at the center of counterpoises. It is effective to reduce the grounding impedance by connecting ground rods to counterpoises in parallel.

Research on the Multi-electrode Plasma Discharge for the Large Area PECVD Processing

  • Lee, Yun-Seong;You, Dae-Ho;Seol, You-Bin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.478-478
    • /
    • 2012
  • Recently, there are many researches in order to increase the deposition rate (D/R) and improve film uniformity and quality in the deposition of microcrystalline silicon thin film. These two factors are the most important issues in the fabrication of the thin film solar cell, and for the purpose of that, several process conditions, including the large area electrode (more than 1.1 X 1.3 (m2)), higher pressure (1 ~ 10 (Torr)), and very high frequency regime (VHF, 40 ~ 100 (MHz)), have been needed. But, in the case of large-area capacitively coupled discharges (CCP) driven at frequencies higher than the usual RF (13.56 (MHz)) frequency, the standing wave and skin effects should be the critical problems for obtaining the good plasma uniformity, and the ion damage on the thin film layer due to the high voltage between the substrate and the bulk plasma might cause the defects which degrade the film quality. In this study, we will propose the new concept of the large-area multi-electrode (a new multi-electrode concept for the large-area plasma source), which consists of a series of electrodes and grounds arranged by turns. The experimental results with this new electrode showed the processing performances of high D/R (1 ~ 2 (nm/sec)), controllable crystallinity (~70% and controllable), and good uniformity (less than 10%) at the conditions of the relatively high frequency of 40 MHz in the large-area electrode of 280 X 540 mm2. And, we also observed the SEM images of the deposited thin film at the conditions of peeling, normal microcrystalline, and powder formation, and discussed the mechanisms of the crystal formation and voids generation in the film in order to try the enhancement of the film quality compared to the cases of normal VHF capacitive discharges. Also, we will discuss the relation between the processing parameters (including gap length between electrode and substrate, operating pressure) and the processing results (D/R and crystallinity) with the process condition map for ${\mu}c$-Si:H formation at a fixed input power and gas flow rate. Finally, we will discuss the potential of the multi-electrode of the 3.5G-class large-area plasma processing (650 X 550 (mm2) to the possibility of the expansion of the new electrode concept to 8G class large-area plasma processing and the additional issues in order to improve the process efficiency.

  • PDF

Synthesis and Performance of Li2MnSiO4 as an Electrode Material for Hybrid Supercapacitor Applications

  • Karthikeyan, K.;Amaresh, S.;Son, J.N.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.72-79
    • /
    • 2012
  • $Li_2MnSiO_4$ was synthesized using the solid-state method under an Ar atmosphere at three different calcination temperatures (900, 950, and $1000^{\circ}C$). The optimization of the carbon coating was also carried out using various molar concentrations of adipic acid as the carbon source. The XRD pattern confirmed that the resulting $Li_2MnSiO_4$ particles exhibited an orthorhombic structure with a $Pmn2_1$ space group. Cyclic voltammetry was utilized to investigate the capacitive behavior of $Li_2MnSiO_4$ along with activated carbon (AC) in a hybrid supercapacitor with a two-electrode cell configuration. The $Li_2MnSiO_4$/AC cell exhibited a high discharge capacitance and energy density of $43.2Fg^{-1}$ and $54Whkg^{-1}$, respectively, at $1.0mAcm^{-2}$. The $Li_2MnSiO_4$/AC hybrid supercapacitor exhibited an excellent cycling stability over 1000 measured cycles with coulombic efficiency over > 99 %. Electrochemical impedance spectroscopy was conducted to corroborate the results that were obtained and described.