Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.2.72

Synthesis and Performance of Li2MnSiO4 as an Electrode Material for Hybrid Supercapacitor Applications  

Karthikeyan, K. (Faculty of Applied Chemical Engineering, Chonnam National University)
Amaresh, S. (Faculty of Applied Chemical Engineering, Chonnam National University)
Son, J.N. (Faculty of Applied Chemical Engineering, Chonnam National University)
Lee, Y.S. (Faculty of Applied Chemical Engineering, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.2, 2012 , pp. 72-79 More about this Journal
Abstract
$Li_2MnSiO_4$ was synthesized using the solid-state method under an Ar atmosphere at three different calcination temperatures (900, 950, and $1000^{\circ}C$). The optimization of the carbon coating was also carried out using various molar concentrations of adipic acid as the carbon source. The XRD pattern confirmed that the resulting $Li_2MnSiO_4$ particles exhibited an orthorhombic structure with a $Pmn2_1$ space group. Cyclic voltammetry was utilized to investigate the capacitive behavior of $Li_2MnSiO_4$ along with activated carbon (AC) in a hybrid supercapacitor with a two-electrode cell configuration. The $Li_2MnSiO_4$/AC cell exhibited a high discharge capacitance and energy density of $43.2Fg^{-1}$ and $54Whkg^{-1}$, respectively, at $1.0mAcm^{-2}$. The $Li_2MnSiO_4$/AC hybrid supercapacitor exhibited an excellent cycling stability over 1000 measured cycles with coulombic efficiency over > 99 %. Electrochemical impedance spectroscopy was conducted to corroborate the results that were obtained and described.
Keywords
Lithium manganese silicate; Activated carbon; Hybrid supercapacitors; Energy density; Specific capacitance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. E. Conway, Electrochemical Supercapacitors, Kluwer- Plenum, New York (1999).
2 Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energ., 34, 4889-4899 (2009).   DOI   ScienceOn
3 P. Simon and Y. Gogosti, Nat. Mater., 7, 845-854 (2008).   DOI   ScienceOn
4 I. Plitz, A. Dupasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, and G. G. Amatucci, Appl. Phys. A., 82, 615-626 (2006).   DOI
5 A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, and W. V. Schalkwijk, Nat. Mater, 4, 366-377 (2005).   DOI   ScienceOn
6 X. L. Wu, L. Y. Jiang, F. F. Cao, Y .G. Guo, and L. J. Wan, Adv. Mater., 21, 2710-2714 (2009).   DOI   ScienceOn
7 Y. G. Wang, J. Y. Lou, W. Wu, C. X. Wang and Y. Y. Xia, J. Electrochem. Soc., 154 (2007) A228-A234.   DOI   ScienceOn
8 A. D. Pasquier, A. Laforgue, and P. Simon, J. Power Sources., 125, 95-102 (2004).   DOI   ScienceOn
9 J. Y. Luo, J. L. Liu, P. He, and Y.-Y. Xia, Electrochim. Acta., 53, 8128-8133 (2008).   DOI   ScienceOn
10 H. Wu, C. V. Rao, and B. Rambabu, Mater. Chem. Phys., 116, 532-535 (2009).   DOI   ScienceOn
11 A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson, and J. O. Thomas, Electrochem. Commun., 7, 156-160 (2005).   DOI   ScienceOn
12 R. Dominko, M. Bele, M. Gaberseek, A. Meden, M. Remskar, and J. Jamnik, Electrochem. Commun., 8, 217- 222 (2006).   DOI   ScienceOn
13 A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek, and J. Jamnik, Chem. Mater., 19, 3633-3640 (2007).   DOI   ScienceOn
14 R. Dominko, J. Power Sources., 184, 462-468 (2008).   DOI   ScienceOn
15 W. Liu, Y. Xu, and R. Yang, J. Alloys Comp, 480, L1-L4 (2009).   DOI   ScienceOn
16 K. Karthikeyan, V. Aravindan, S. B. Lee, I. C. Jang, H. H. Lim, G. J. Park, M. Yoshio, and Y. S. Lee, J. Power Sources, 195, 3761-3764 (2010).   DOI   ScienceOn
17 K. Karthikeyan, V. Aravindan, S. B. Lee, I. C. Jang, H. H. Lim, G. J. Park, M. Yoshio, and Y. S. Lee, J. Alloys Comp, 504, 224-227 (2009).
18 L. X. Yang, Y. J. Zhu, H. Tong, and W. W. Wang, Ultrason. Sonochem., 14, 259-265 (2007).   DOI   ScienceOn
19 X. H. Hu, X. P. Ai, H. X. Yang, and S. X. Li, J. Power Sources., 74, 240-243 (1998).   DOI   ScienceOn
20 R. Dominko, I. Arcon, A. Kodre, D. Hanzel, and M. Gaberscek, J. Power Sources., 189, 51-58 (2009).   DOI   ScienceOn
21 S. B. Lee, I. C. Jang, H. H. Lim, V. Aravindan, H. S. Kim, and Y. S. Lee, J. Alloys Compds, 491, 668-671 (2010).   DOI   ScienceOn
22 M. E. A. Dompablo, R. Dominko, J. M. G. Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik, and E. Moran, Chem. Mater., 20, 5574-5584 (2008).   DOI   ScienceOn
23 M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources (DOI: 10.1016/j.jpowsour.2010.06.060).   DOI   ScienceOn
24 H. H. Lim, I. C. Jang, S. B. Lee, K. Karthikeyan, V. Aravindan, and Y. S. Lee, J. Alloys Compds, 495, 181-184 (2010).   DOI   ScienceOn
25 Q. Wang, Z. Wen, and J. Li, Adv. Func. Mater., 16, 2141-2146 (2006).   DOI   ScienceOn
26 G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, J. Electrochem. Soc., 148, A930-A939 (2001).   DOI   ScienceOn
27 J. H. Park and O. O. Park, J. Power Sources., 111, 185-190 (2002).   DOI   ScienceOn
28 V. Khomenko, E. R. Pinero, and F. Beguin, J. Power Sources., 153, 183-190 (2006).   DOI   ScienceOn
29 K. Zaghib, J. B. Goodenough, A. Mauger, and C. Julien, J. Power Sources., 194, 1021-1023 (2009).   DOI   ScienceOn
30 W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, and H.M. Cheng, Carbon, 44, 216-224 (2006).   DOI   ScienceOn