• 제목/요약/키워드: cap plasticity

검색결과 17건 처리시간 0.022초

외압(外壓)을 받는 축대칭(軸對稱) Shell의 한계하중(限界荷重)에 관한 연구(硏究) (Ultimate Load Analysis of Axisymmetric Shells of Revolution Subjected to External Pressure)

  • 김재복;김창렬
    • 대한조선학회지
    • /
    • 제20권4호
    • /
    • pp.1-8
    • /
    • 1983
  • This paper describes the application of the finite element method to the large deflection elastic plastic analysis and ultimate load calculation of axisymmetric shell of revolution with initial imperfection subjected to external pressure. The nonlinear equilibrium equations are linearized by the successive incremental method and are solved by the combination of load increment and iteration scheme with considering plastic deformation theory. To get the more realistic effect of large deflection, corrected coordinats and directions of applied load ar every load increment steps are used. The effects of the plasticity, initial imperfection and the shape of shells on the ultimate load of clamped circular cap under external pressure are investigated. Consequently, the following conclusions are obtained; (1) At same geometric parameter $\lambda$, each shape of clamped circular caps yield same elastic ultimate loads in both cases, i.e. with and without initial imperfections, whereas, in the case of elastic-plastic state the shell becomes thicker, the ultimate loads are getting smaller. (2) The effects of initial imperfection to ultimate load are most significant in the elastic case and are more senstive in the elastic-plastic state with the thinner shells.

  • PDF

직사각형 리튬 이온 전지의 일체형 안전장치 제조 공정에 관한 연구 (Manufacturing Integral Safety Vents in Prismatic Lithium-ion Batteries)

  • 김정훈;이경훈;임영진;김병민
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.293-298
    • /
    • 2015
  • A safety vent is crucial to protect its user from unpredictable explosions caused by increasing internal pressure of the lithium-ion batteries. In order to prevent the explosion of the battery, a safety vent rupture is required when the internal pressure reaches a critical value. In conventional manufacturing, the cap plate and the safety vent are fabricated separately and subsequently welded to each other. In the current study, a manufacturing process including a backward extrusion and coining process is suggested to produce an integral safety vent which also has the benefit of increasing production efficiency. FE simulations were conducted to predict the rupture pressure and to design the safety vent using a ductile fracture criterion and the element deletion method. The critical value, C, in the ductile fracture criterion was obtained from uniaxial tensile tests with an annealed sheet of 1050-H14 aluminum alloy. Rupture tests were preformed to measure the rupture pressure of the safety vent. The results met the required rupture pressure within 8.5±0.5 kgf/cm2. The simulation results were compared with experimental results, which showed that the predicted rupture pressures are in good agreement with experimentally measured ones with a maximum error of only 3.9%.

Numerical modeling of dynamic compaction process in dry sands considering critical distance from adjacent structures

  • Pourjenabia, Majid;Hamidi, Amir
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.49-56
    • /
    • 2015
  • Dynamic compaction (DC) is a useful method for improvement of granular soils. The method is based on falling a tamper (weighting 5 to 40 ton) from the height of 15 to 30 meters on loose soil that results in stress distribution, vibration of soil particles and desirable compaction of the soil. Propagation of the waves during tamping affects adjacent structures and causes structural damage or loss of performance. Therefore, determination of the safe or critical distance from tamping point to prevent structural hazards is necessary. According to FHWA, the critical distance is defined as the limit of a particle velocity of 76 mm/s. In present study, the ABAQUS software was used for numerical modeling of DC process and determination of the safe distance based on particle velocity criterion. Different variables like alluvium depth, relative density, and impact energy were considered in finite element modeling. It was concluded that for alluvium depths less than 10 m, reflection of the body waves from lower boundaries back to the soil and resonance phenomenon increases the critical distance. However, the critical distance decreases for alluvium depths more than 10 m. Moreover, it was observed that relative density of the alluvium does not significantly influence the critical distance value.

폭발하중을 받는 콘크리트 보의 요소의존성 최소화 인장기준식 (A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading)

  • 곽효경;강한글
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.137-143
    • /
    • 2017
  • 본 논문에서는 파괴에너지이론에 기초하여 요소의존성을 최소화할 수 있는 인장파괴기준식을 제안하고 HJC(holmquist johnson cook), CSC(continuous surface cap), Orthotropic 모델을 이용한 폭발수치해석을 통해 기준식을 검증하였다. 폭발하중으로 인한 RC 보의 시간에 따른 중앙지점의 처짐을 실험결과와 비교하였다. 그 결과 기준식을 통해 산정된 파괴변형률을 수치해석상에 적용해줌으로써 해석결과의 요소의존성이 감소하였고 해의 정확성 또한 향상되는 것을 파악할 수 있었다.

신경세포 연접후 위치에 단백질합성 해석시작인자(eIF)들의 존재 (Localization of Translation Initiation Factors to the Postsynaptic Sites)

  • 최명권;박성동;박인식;문일수
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1526-1531
    • /
    • 2011
  • 신경세포의 연접후 위치에서 단백질합성은 국소적 연접가소성의 조절에 중요한 역할을 한다. 본 연구에서는 연접후 위치에 eIF들이 존재하는지를 배양한 흰쥐해마신경세포의 면역세포화학적 염색과 immunoblot, 그리고 세제세척실험으로 알아보았다. 단백질해석 시작단계의 초기에 중요한 역할을 하는 eIF4E와 eIF4G, 개시코돈을 찾는 단계에서 중요한 eIF5, 외부자극에 의하여 합성을 시작하게 하는 eIF6, 그리고 불리한 환경에서 해석의 효율을 높여주는 eIF5A 들은 모두 해마신경세포의 연접후에 위치함을 배양한 해마신경세포를 다중초점형광현미경으로 관찰할 수 있었다. 또한 Immunoblot 실험에서도 이들은 연접후치밀질(PSD) 분획에서 검출되었으며, 여러 가지 세제에 의하여 PSD로부터 잘 떨어지지 않는 것으로 보아 PSD와 강하게 결합하고 있음을 알 수 있었다. 본 연구결과는 여러 가지 eIF들이 연접후에 위치하여 다양한 상황에서 단백질합성을 시작하게 할 수 있음을 시사한다.

Delimitation of Russula Subgenus Amoenula in Korea Using Three Molecular Markers

  • Park, Myung Soo;Fong, Jonathan J.;Lee, Hyun;Oh, Seung-Yoon;Jung, Paul Eunil;Min, Young Ju;Seok, Soon Ja;Lim, Young Woon
    • Mycobiology
    • /
    • 제41권4호
    • /
    • pp.191-201
    • /
    • 2013
  • Distinguishing individual Russula species has been difficult due to extensive phenotypic plasticity and obscure morphological and anatomical discontinuities. Due to highly similar macroscopic features, such as the presence of a red-cap, species identification within the Russula subgenus Amoenula is particularly difficult. Three species of the subgenus Amoneula have been reported in Korea. We used a combination of morphology and three molecular markers, the internal transcribed spacer (ITS), 28S nuclear ribosomal large subunit (LSU), and RNA polymerase II gene (RPB2), for identification and study of the genetic diversity of Russula subgenus Amoenula in Korea. We identified only two species in Korea (R. mariae and R. violeipes); these two species were indistinguishable according to morphology and LSU, but were found to be reciprocally monophyletic species using ITS and RPB2. The markers, ITS, LSU, and RPB2, have been tested in the past for use as DNA barcoding markers, and findings of our study suggest that ITS and RPB2 had the best performance for the Russula subgenus Amoneula.

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.